

Forschungsstrategie zur Aufbau- und Verbindungstechnik in der Elektronik

Roadmap des Fachausschusses 10

Vision	Der FA10 ist die führende Plattform für Wissenschaft, Hersteller und Anwender für anwendungsorientierte, innovative Forschung in der elektronischen Aufbau- und Verbindungstechnik
Mission	 Kommunikationsplattform für Wissenschaft und Industrie
	Identifikation und Konsolidierung von Leitthemen
	 Entwicklung strategischer Roadmaps und Ableitung des Forschungsbedarf
	Initiierung und inhaltliche Begleitung von Forschungsprojekten
	Transfer von Forschungsergebnissen
	Vernetzung mit Forschungsträgern
	 Technologische F\u00f6rderung des Mittelstandes in Deutschland

Prämissen

Paradigmenwechsel notwendig

- Technologieentwicklung muss:
 - > Bestandteil Systementwicklung sein
 - > In gesamte Prozesskette der Produktentstehung integrierbar sein
 - > Vorgaben zu Funktion, Qualität und Kosten erfüllen
- Technologieentwicklung unabhängig von Produkt/Produktklasse nicht mehr zielführend
- Forschungsthemen müssen sich an Produkten/Produktklassen orientieren
- Ableitung produktübergreifender Leitthemen aus strategischen Marktfeldern

Strategische Marktfelder

Automobilelektronik, Verkehr

- Kompakte, leichte und energieeffiziente Antriebs- und Wandlerysteme
- Mechatronische Integration, vernetzte Sensorik, Aktuatorik, HF-Systeme

Energie

- Effiziente regenerative Energieerzeugung, verlustarme Wandlung
- "Intelligente" Netze, Speicherung

Industrie-, Gebäudetechnik, Beleuchtung

- Schnelle Regelung hoher Leistungen, Energiemanagement
- Vernetzte Sensorik/Aktorik,
- Kosteneffiziente, zuverlässige Beleuchtungssysteme (LED, OLED)

Gebrauchsgüter (Wohnen, Heizen, Kommunikation)

Energieeffizienz, Vernetzung

Medizintechnik

- Biokompatible, zuverlässige, miniaturisierte Implantate
- Sensorik und Diagnostik, Ambient Assisted Living
- Miniaturisierte Energieversorgung, Batterie, Energy-Harvesting, Energiewandler

Leitthemen für strategische Marktfelder

- Leiterplatten-Elektronik
- Leistungselektronik
- MEMS/Sensorik
- Elektrische Kontakte
- Materialherstellung, Equipment f
 ür Fertigung und Qualitätssicherung

Leiterplatten-Elektronik

Beschreibung / Anwendung

- Steuergeräte im Kfz
- Telekommunikation
- Medizintechnik
- Unterhaltungselektronik
- •Computertechnologien / Speicher
- Industrieelektronik
- Leistungselektronik (eMobility, Solar, Windkraft)
- Opto-Elektronik

Trends / Treiber

- Höher Einsatztemperaturen
- •Höhere

Lebensdaueranforderungen

- •Höhere Integration (kleinerer Baugruppen), -Funktionalität
- Sehr hohe Ströme
- •Einbettung von Bauelementen
- Miniaturisierung
- •HF-Anwendung, steigende Frequenzen

Leiterplatten-Elektronik

Forschungsbedarf / Handlungsfelder

Material

- · Elektro-optische Leiterplatte, HF-taugliche LP
- Hoch Tg-Polymere f
 ür Laminate
- Hoch-temperaturleitfähige Laminate
- Hochstromfähige Leiterplatten

- Neue Oberflächen-Metallisierungssysteme (Pd, overplated pad metallization)
- Neue Verbindungsmaterialien (Ag-Sinterpaste, low cost-Bonddrähte, -bänder, Pb-freie Lote)

Technologie

- · Durchsteckmontage, Dickkupfer-Technologien
- Cu-Drahtbonden in neuen Anwendungsfeldern
- · Integrationstechnologien, Embedding
- Montage ungehäuster Chips (Flip-Chip)
- System in Package, 3D-Integration, Wafer Level Packaging
- Optimierte, hochtemperaturbeständige AVT (z.B. Sinterverbindungen für Power oder LED)

Methoden

- Modellierung und Simulation (Ausbau der FEM-Analysen, physikalische Modellierung und multi scale modelling)
- · Thermische Messtechnik
- · Analyse & Optimierung intermetallischer Phasen
- · Zerstörungsfreie Prüfverfahren
- Schnelle komplexe Fehlerverfolgung (Automobil), Diagnostik komplexer 3D-Bauelemente

Leistungselektronik

Beschreibung / Anwendung

- Automotiv Elektrotraktion / Nebenantriebe
- •Regenerative Energien Photovoltaik / Windkraft
- Energieversorgung/-wandlung
- •Elektrische Antriebe Industrial
- •Non Automotiv Traktion (Bahn, Hebezeuge, Multicars, E- Bikes)
- •Industrielle Regelungstechnik (Laser, Computertomografen...)
- Beleuchtungstechnik

Trends / Treiber

- •E-Mobilität
- •CO₂-Reduktion
- Miniaturisierung
- •Höhere Zuverlässigkeit bei rauen Umgebungsbedingungen
- (< 250°C, hohe mech. Belastung)
- •Energieeffizienz
- Gewichtsreduzierung
- •Beschleunigte Lebensdauertests bei Temperaturen höher als Betriebstemperatur

Leistungselektronik

Forschungsbedarf / Handlungsfelder

Material

- Hochtemperaturstabile Füge- und Kontaktierwerkstoffe, Bonddrähte, -bänder
- Hochtemperatur Verguss / Moldmassen / Thermal Interface Materials
- Verlustarme Halbleiter, HT-geeignete passive BE
- Thermomechanisch stabile Werkstoffe und Aufbautechniken
- · Verbesserte Isolationswerkstoffe
- Verbesserte Substrate und Dielektrika mit hoher Wärmeleitfähigkeit

Technologie

- · Verfahren mit geringer Temperatureintragung
- Taktzeitoptimierte Verfahren
- Hochtemperaturstabile AVT für Die-attach und Top-Kontakt (z.B. Ag-Sintern, Cu-Bonden)
- Modulkonzepte mit verbesserter Zuverlässigkeit, höherer Schaltgeschwindigkeit, Effizienz
- Effiziente Kühlungen und Thermomanagement

Methoden

- · Bewertung von Robustheit
- Ausbau der FEM-Analyse, Simulation
- · Neue Standards bei Zuverlässigkeitsprüfungen
- T-abhängige, alterungsabhängige Materialdaten
- Zerstörungsfreie Prüfverfahren (z.B. fürs Sintern)
- adaptierte Diagnostik (Präparation, Materialanalytik)
- Mechanische & thermische Simulation im Grenzbereich

MEMS/Sensorik

Beschreibung / Anwendung

- ·Beschleunigung, Drehrate
- Druck, Temperatur, Feuchte
- Handy-Navigation (Kompass)
- •Schritt-, Fall- und Lage-Erkennung
- Medizintechnik (Analyse / Dosierung / etc.)
- Sensornetzwerke
- Gassensorik
- •Autonome, intelligente Multisensorik

Trends / Treiber

- Miniaturisierung
- •SIP (System in Package, 3D, TSV)
- Kosten
- •Geringer Energieverbrauch
- Energieautarke Systeme
- •Internet der Dinge
- Harsh environment

MEMS/Sensorik

Forschungsbedarf / Handlungsfelder Material · Stressarme Packaging-Materialien · Neue Metallisierungen, Gettermaterialien Neue Bonddrähte Opfermaterialien zur Oberflächenfreistellung · Biokompatible Materialien · Stressarme Chipkleber **Technologie** · Stressarme , -kontrollierte AVT · Neue Bondtechnologien (Cu- Draht) · Niedrigtemperaturverbindungen • Neue Waferbond-Verfahren (low Temp. Plasma, • Integration MEMS & ASICS & Passiven in ein Metall, reaktiv) System, Embedding, Flip-Chip • Oberflächenfreistellung für Mediensensorik • 3D Packaging zur Trennung von Medien- & · Modulares Packaging - unterschiedliche Kontaktseite, Integration Medienzugänge Ausbaustufen eines Basis-Systems Through Silicon Via-Kontaktierungen · EMV zwischen Komponenten in einem System Methoden Zuverlässigkeit • Standardisierte Prüfungen und Spezifikationen Modellierung der Relaxation im MEMS-Gehäuse für MEMS-Aufbauten Sensordrift abfangen

Elektrische Kontakte

Beschreibung / Anwendung

- Elektrotraktion
- •Erneuerbare Energien (Solar, Windenergie, Offshore)
- •Flexible Elektronik (Flex-Leiterplatten, Textilien)
- Organische Elektronik
- Smart Grid
- •Energieversorgung, -erzeugung im Haus

Trends / Treiber

- •E-Mobilität, Leistungselektronik
- •CO₂-Reduktion, Gewichtseinsparung
- •Höhere Einsatztemperaturen
- Kostenminimierung
- Miniaturisierung
- •Reduzierung Edelmetall-Materialeinsatz
- Ersatz von Edelmetallen

Elektrische Kontakte

Forschungsbedarf / Handlungsfelder

Material

- Cu/Al-Verbundwerkstoffe
- Schweißbares Al mit geringer Kriechneigung und guter Biegewechselfestigkeit, Langzeitzuverl. im elastischen Bereich < R_{p 0.2}
- · Neue Bonddrähte
- Mikro- / Nanomaterialien zur Verbesserung des elektr. Kontakts
- Ag/Metalloxid-Werkstoffe auf Cu-Legierungen

Technologie

- Stressarme Schweißprozesse (auch für Verbundwerkstoffe)
- AVT für kostengünstige, effiziente und ROHSkompatible Solarmodule
- · AVT für thermoelektrische Module
- · US- Schweißen von Lastanschlüssen
- Bonden und Crimpen von Al und Cu (Al-/Cu-Draht auf Cu-/Al-Hülse)
- Reparaturfähigkeit
- Reduzierung des Edelmetalleinsatzes
- Selbstüberwachung ("intelligente Steckverbindung")

Methoden

- Analyse der mech. / elektr. / therm. Belastungen und Effekte
- Lebensdauer-Prüfungen

- FEM Modelle unter Berücksichtigung der Herstellprozesse
- Entwicklung von Lebensdauermodellen

Equipment und Materialherstellung

Beschreibung / Anwendung

- •Gerätetechnik für die Fertigung
- Materialherstellung
- Qualitätssicherung
- Materialdiagnostik
- •Zuverlässigkeitsprüfung
- •Elektrischer Test

Trends / Treiber

- •Miniaturisierung und Funktionalität
- Durchsatz und Kosten
- •Multimaterial-System
- •Komplexe Systemdesigns
- •Zuverlässigkeitsanforderungen durch OEMs

Equipment und Materialherstellung

Forschungsbedarf / Handlungsfelder			
Material:			
Substrate, Lote, Klebstoffe, Pasten, Drähte	Verkapselungen		
Technologie:			
 Drahtbonder, Löttechnologie, Inline-fähige Technik für QS und Test Automatische Verfahren für zerstörungsfreie Fehlerdiagnostik 	 Klebtechnologie, Dispensing, Ink jetting Laserstrahltechnologien Sensorik und Prüfmittel 		
Methoden			
Lebensdauerabschätzungen komplexer VerbündeMaterialkennwerte und Materialmodelle	 zerstörungsfreie Prüftechnik, effiziente Präparation für SiP und 3D Hochauflösende Grenzflächenanalytik 		

Forschungsvereinigung Schweißen und verwandte Verfahren e. V. des DVS

Aachener Straße 172 40223 Düsseldorf

T +49. 211. 1591-113 F +49. 211. 1591-200

info@dvs-forschung.de www.dvs-forschung.de

Fachausschuss 10

Vorsitzender:

Dr.-Ing. Godehard Schmitz, Robert Bosch GmbH, Schwieberdingen

Stv. Vorsitzender:

Dipl.-Ing. Bernhard Petermann, Miele & Cie. KG, Gütersloh

Geschäftsführer:

Dipl.-Ing. Michael M. Weinreich, T +49. (0)211. 1591-279

michael.weinreich@dvs-hg.de www.dvs-forschung.de/fa10