

Die Forschungsvereinigung des DVS ist Mitglied in der

Arbeitsgemeinschaft industrieller Forschungsvereinigungen "Otto von Guericke" e.V.

Vorwort des Vorsitzenden

"Wissensvorsprung führt zu Innovationen", unter dieser Devise standen auch im Jahre 2002 die Aktivitäten der Forschungsvereinigung des DVS. Die Akzeptanz der geleisteten Arbeit spiegelt sich wohl am deutlichsten in der weiter gestiegenen Anzahl von mitarbeitenden Industrieunternehmen. Ihre Anzahl hat sich um weitere 28 Mitglieder auf 182 Unternehmen erhöht.

Im Jahr 2002 wurden 6, 7 Mio. € öffentliche Fördermittel aus dem BMWA über die AiF eingeworben. Damit wurden 106 Forschungsvorhaben finanziert, an denen 35 Forschungsinstitute und etwa 800 Unternehmensvertreter direkt beteiligt sind.

Die fügetechnische Gemeinschaftsforschung im DVS ist nach wie vor durch ein hohes Maß an industriellen Eigenleistungen gekennzeichnet, die von den Unternehmen und vom DVS direkt für die Planung und Durchführung der Forschungsvorhaben aufgewendet werden. Auch diese finanzielle Unterstützung ist ein eindrucksvoller Beleg für die Anwendungsorientierung der Forschungsvorhaben.

Der bisherige Fachausschuss Kunststoffschweißen und Kleben wurde in einen Fachausschuss 8 "Klebtechnik" und einen Fachausschuss 11 "Kunststoff-Fügen" umstrukturiert. Mit diesen Änderungen wird der wachsenden eigenständigen Bedeutung der Klebtechnik im Rahmen der fügetechnischen Gemeinschaftsforschung Rechnung getragen. Dem Kunststoff-Fügen wird mit einem eigenen Fachausschuss ein angemessener Rahmen für Forschungsarbeiten gegeben. In den elf Fachausschüssen der Forschungsvereinigung waren im Berichtszeitraum 257 Unternehmen tätig nicht nur insgesamt eine steigender Tendenz, auch die Aktivitäten

innerhalb der Projektbegleitenden Ausschüsse nahmen weiter zu. Immer mehr Unternehmen erkennen die Vorteile einer strukturierten know- how- Erarbeitung durch diese Möglichkeit einer aktiven Mitarbeit unmittelbar in den Forschungvorhaben.

Zu einer festen Einrichtung haben sich die der Forschungsfindung dienenden DVS-Forschungsseminare entwickelt. Im Januar 2000 hatte erstmals ein solches Seminar zum Thema "Innovativer Leichtbau" stattgefunden, initiiert durch das BMBF- Rahmenprogramm "Forschung für die Produktion von morgen". Im Berichtsjahr hatte dieses Seminar die Auslegung von gefügten metallischen Konstruktionen einschließlich der Festigkeitsberechnungen zum Thema.

Mit dem Jahr 2002 hat Herr Dr.-Ing. Godehard Schmitz von der Robert Bosch GmbH, Vorsitzender des Fachausschusses 10 (Mikroverbindungstechnik) sein Amt als zweiter stellvertretender Vorsitzender der Forschungsvereinigung angetreten. Wir danken Herrn Dr. Schmitz für die Übernahme dieser zusätzlichen Aufgabe und für die Stärkung der Vorstandsarbeit, die auch vor dem Hintergrund eines zunehmenden forschungspolitischen Engagements der Forschungsvereinigung wichtig ist.

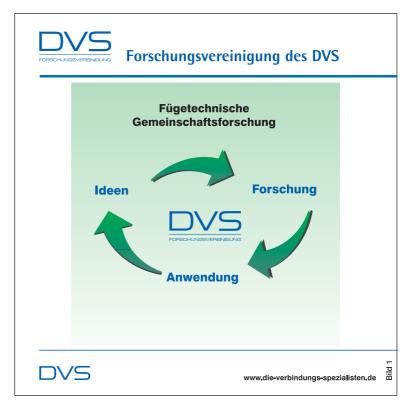
Im Zusammenhang mit diesen und auch anderen für die Sicherung der Forschungsarbeit wichtigen Fragen wurde im Jahr 2002 eine Strategiediskussion über die weitere Ausrichtung der fügetechnischen Gemeinschaftsforschung begonnen. Die Ergebnisse dieser Diskussion werden in den nächsten Sitzungen von Forschungsrat und Mitgliederversammlung am 22. Mai 2003 zusammengefasst. Ziel der Forschungsvereinigung ist eine weitere anwendungsorientierte Fokussierung der fügetech-

nischen Gemeinschaftsforschung und eine zunehmende Vernetzung der Forschung nicht nur innerhalb des DVS sondern auch mit anderen Forschungsorganisationen im nationalen und internationalen Rahmen. Für die Zukunft muss auch eine anteilige Industriefinanzierung von Vorhaben der fügetechnischen Gemeinschaftsforschung sichergestellt werden, dazu gilt es, den DVS-Forschungsfonds aktiv zu nutzen. Alle Mitgliedsunternehmen sind daher gebeten, sich mit Geldbeiträgen am weiteren Ausbau dieses DVS-Forschungsfonds zu beteiligen.

Insgesamt hat die Förderung der fügetechnischen Gemeinschaftsforschung aus Mitteln der Arbeitsgemeinschaft industrieller Forschungsvereinigungen "Otto von Guericke" (AiF) aus dem Bundesministerium für Wirtschaft und Arbeit (BMWA) auch im Jahr 2002 erfolgreiche Forschung und Innovation ermöglicht. Das Engagement der Mitglieder, die Unterstützung des DVS und die Förderung der öffentlichen Hand haben sich damit ein weiteres Mal als erfolgreiches und zukunftsgerichtetes Konzept zur Stärkung der Unternehmen in der Fügetechnik erwiesen. Der Dank gilt deshalb allen Vertretern aus Unternehmen, Körperschaften und Forschungsinstituten sowie den Mitarbeitern der AiF und den Verantwortlichen im BMWA für die Förderung und Unterstützung der Arbeit der Forschungsvereinigung.

Düsseldorf, im Mai 2003

Dr. rer. nat. Alfward Farwer


INHALTSVERZEICHNIS

1	Aufgaben und Strukturen	6
2	Fügetechnische Gemeinschaftsforschung 2002	14
3	Perspektiven der fügetechnischen Gemeinschaftsforschung	20
D	OKUMENTATION	
	Mitglieder der Forschungsvereinigung	26
	Fügetechnische Gemeinschaftsforschung 2002: Vorhaben, Ergebnisse, Planung	34
ΙN	MPRESSUM	63

1 Aufgaben und Strukturen

Kerngeschäft der Forschungsvereinigung des DVS war auch im Jahr 2002 die fügetechnische Gemeinschaftsforschung. Damit wird im Folgenden die industrielle Gemeinschaftsforschung auf den Gebieten Fügen, Trennen und Beschichten (FTB) zusammengefasst. Diese fügetechnische Gemeinschaftsforschung ist eine gemeinschaftliche Forschung, an der Unternehmen aus allen Bereichen der Fügetechnik teilnehmen. Die Unternehmen können gemeinsamen Forschungsbedarf definieren und dabei Forschungsrichtungen und Forschungsschwerpunkte bestimmen. Dieser Ansatz der fügetechnischen Gemeinschaftsforschung garantiert nach wie vor maximale Anwendungsnähe der Forschungsthemen und eine optimale Nutzung der Ergebnisse. Durch die Mitarbeit in den Fachausschüssen der Forschungsvereinigung ergibt sich ein direkter Erfahrungsaustausch der Unternehmen untereinander sowie mit den Forschungsinstituten. Dadurch erhalten die Unternehmen einen kontinuierlichen Zugang zum

jeweiligen aktuellen technologischen Wissen. Die Mitwirkung in den Fachausschüssen der Forschungsvereinigung gibt den Unternehmen außerdem die Mög-

lichkeit, das Spektrum relevanter Forschungsthemen ihrer Branche kennen zu lernen. Die Beteiligung von Industrievertretern an allen Prozessschritten ermöglicht einen frühzeitigen Wissenstransfer in die Unternehmen, im optimalen Fall sogar die Parallelisierung von Forschungsarbeit und Ergebnisnutzung. Wesentliche Aufgabe der Forschungsvereinigung ist es, für diese Aktivitäten den geeigneten Rahmen zu setzen und die notwendigen Abläufe professionell zu organisieren (Bild 1).

Im Zentrum aller Aktivitäten der Forschungsvereinigung steht der Anwendernutzen der Forschungsvorhaben für die Unternehmen. Zur Finanzierung der fügetechnischen Gemeinschaftsforschung arbeitet die Forschungsvereinigung mit der Arbeitsgemeinschaft industrieller Forschungsvereinigungen "Otto von Guericke" e.V. (AiF) und dem Bundesministerium für Wirtschaft und Arbeit (BMWA) zusammen (Bild 2).

Schnittstellenfunktion zur Gemeinschaftsarbeit des DVS

Die Forschungsvereinigung bildet mit ihren Aktivitäten für ihre Mitglieder - Unternehmen, Forschungsinstitute, Körperschaften eine aktive Schnittstelle zur Gemeinschaftsarbeit im DVS mit seinen Mitgliedern aus Industrie, Handwerk und Körperschaften (Bild 3). Aktuelle Forschungsergebnisse können somit direkt in die Erarbeitung von Regelwerken, Richtlinien und Normen einfließen und als Basis für Qualifizierungsmaßnahmen im Rahmen der Ausund Weiterbildung dienen. Es bestätigt sich, dass der kontinuierliche Transfer von Wissen aus der Forschung die technisch-wissenschaftliche Arbeit im DVS bereichert. Die Nutzung der Forschungsergebnisse in der Praxis wiederum führt zu Impulsen für die Forschungsplanung in der Forschungsvereinigung.

Mitglieder der Forschungsvereinigung

Die Forschungsvereinigung hatte im Berichtszeitraum insgesamt 254 Mitglieder (Bild 4), darunter 182 Industrieunternehmen, 13 Körperschaften und 59 Forschungsinstitute. Die Zahl der Mitgliedsunternehmen in der Forschungsvereinigung in den Jahren 1993 bis 2002 zeigt Bild 5. Gegenüber dem Jahr 2001 hat sich die Zahl der Industrieunternehmen um 28 erhöht.

Zu den Forschungsinstituten zählen 8 Schweißtechnische Lehr- und Versuchsanstalten (SLV) – darunter 5 Mitglieder der Gesellschaft Schweißtechnik International (GSI) – und das IFW Jena (neun DVS-Institute), 8 Fraunhofer-Institute, 37 Hochschulinstitute und 5 weitere Forschungsinstitute. Unternehmen, Körperschaften und Forschungsinstitute sind in den Übersichten 1 bis 3 in der Dokumentation genannt.

182 Industrieunternehmen
90 kleine und mittlere Unternehmen
92 große Unternehmen
13 Körperschaften
9 DVS-Forschungsinstitute
(8 SLV's [davon 5 GSI-Mitglieder] + ifw)
37 Hochschulinstitute
8 Fraunhofer Institute
5 Sonstige Forschungsinstitute
(BAM, BIAS, GFE, IMA, LZH)

254 Mitglieder

Mitglieder der Forschungsvereinigung

Veränderungen bei den Forschungsinstituten

Neuaufnahmen

Fraunhofer Institut für Werkstoffund Strahltechnik, Dresden

Institut für Werkzeugmaschinen und Betriebswissenschaften, Technische Universität München

Wiederaufnahme

Institut für Tragwerksbau, Technische Universität München

Übergang

Das Lehr- und Forschungsgebiet Klebtechnik an der Rheinisch Westfälischen Technischen Hochschule wurde nach dem Wechsel seines Leiters an eine andere Universität nicht wieder besetzt, die Aufgaben sind auf das Institut für Schweißtechnische Fertigungsverfahren derselben Hochschule übergegangen.

Wechsel in den Leitungen haben sich an folgenden Instituten ergeben:

SLV Berlin-Brandenburg, GSI mbH

Institut für Füge- und Schweißtechnik, Technische Universität Braunschweig

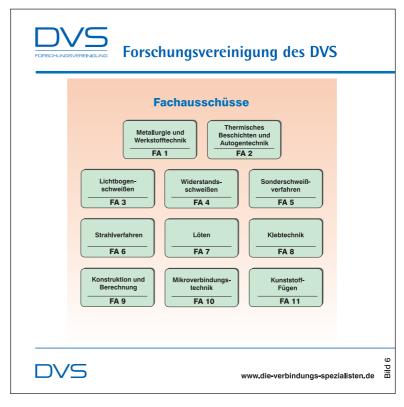
Bremer Institut für angewandte Strahltechnik

Institut für Schweißtechnik und Trennende Fertigungsverfahren, Technische Universität Clausthal

Lehrstuhl für Werkstofftechnologie, Universität Dortmund

Lehrstuhl für Werkstoffkunde und Werkstoffmechanik, Technische Universität München

Fachausschüsse


Nach Beschluss des Forschungsrates in seiner Sitzung vom 16. Mai 2002 erfolgte im Berichtszeitraum eine Umstrukturierung der Fachausschüsse. Der bisherige Fachausschuss "Kunststoffschweißen und Kleben" wurde in einen Fachausschuss 8 "Klebtechnik" und einen neuen Fachausschuss 11 "Kunststoff-Fügen" umstrukturiert. Mit dieser Änderung wird der wachsenden Bedeutung der Klebtechnik Rechnung getragen. Dem Kunststoff-Fügen wird mit einem eigenen Fachausschuss ein angemessener Rahmen für Forschungsarbeiten gegeben. Beide Fachausschüsse haben sich im Berichtszeitraum konstituiert und ihre Arbeit aufgenommen.

Die elf Fachausschüsse der Forschungsvereinigung (Bild 6) repräsentieren die ganze Breite der fügetechnischen Gemeinschaftsforschung. Die Fachausschüsse sind verantwortlich für die Planung, Begleitung, Steuerung und Bewertung von Forschungsvorhaben. Darüber hinaus haben sie wesentliche Bedeutung für den Transfer und für die Umsetzung der Ergebnisse (Bild 7).

Der rege Fachaustausch bereits in der Planungsphase der Forschung ist ein wesentliches Element der gemeinschaftlichen Arbeit. Die Definition eines Forschungsvorhabens ist bereits ein wesentlicher Schritt zur Lösung des Forschungsproblems.

Über laufende und abgeschlossene Forschungsvorhaben wird in den Fachausschüssen berichtet. Die Beratungen erfolgen in Ergänzung der Begleitung der Vorhaben durch die projektbegleitenden Ausschüsse.

Ergebnisse der Forschungsvorhaben können dadurch schnell und direkt in die Anwendung der Industrieunternehmen transferiert werden.

Es ist das Verständnis der Forschungsvereinigung, dass die Umsetzung der erzielten Ergebnisse in die Anwendung und damit in wettbewerbsrelevante Vorteile Aufgabe jedes einzelnen Unternehmens im Anschluss an die gemeinsame Forschungsarbeit ist. Forschungsvereinigung und Forschungsinstitute tragen die Verantwortung für den vorangehenden Wissenstransfer. Dazu geeignete Maßnahmen werden durch die Forschungsvereinigung initiiert und koordiniert. Darüber hinaus wird die Forschungsvereinigung verstärkt Maßnahmen zur Erfolgskontrolle und -steuerung ergreifen.

Die Zusammensetzung der Fachausschüsse 2002 zeigt Bild 8. Es ist weiterhin eine positive Entwicklung bezüglich der Mitgliedschaft und der aktiven Mitwirkung aus der Industrie zu beobachten. Die Anzahl der Industrievertreter in den Fachausschüssen ist im Berichtszeitraum auf 257 Mitglieder gestiegen (Bild 9).

Mitgliedschaften					
Fachausschuss	Industrie	Körperschaften	Forschungsinstitute	Insgesamt	
1 Metallurgie und Werkstofftechnik	43	3	30	76	
2 Thermisches Beschichten und Autogentechnik	30	2	25	57	
3 Lichtbogenschweißen	46	4	18	68	
4 Widerstandschweißen	18	4	18	40	
5 Sonderschweißverfahren	23	4	16	43	
6 Strahlverfahren	45	3	26	74	
7 Löten	30	3	21	54	
8 Klebtechnik	26	4	11	41	
9 Konstruktion und Berechnung	28	4	30	62	
10 Mikroverbindungstechnik	24	2	28	54	
11 Kunststoff-Fügen	28	5	13	46	
Zusa Zusa	Zusammensetzung der Fachausschüsse 2002				

Amtierende Vorsitzende und stellvertretende Vorsitzende der Fachausschüsse

Fachausschüsse	Vorsitzende	stellvertretende Vorsitzende
FA 1 Metallurgie und Werkstofftechnik	<i>DrIng. H. Nies</i> Oerlikon Schweißtechnik GmbH	DiplIng. F. Palm EADS Deutschland GmbH
FA 2 Thermische Beschichtungs- verfahren und Autogentechnik	<i>DrIng. H. Reimann</i> Gotek GmbH	<i>DiplIng. P. Heinrich</i> Linde Gas AG
FA 3 Lichtbogenschweißen	<i>DrIng. S. Trube</i> Cloos Innovations GmbH	<i>DrIng. W. Scheller</i> Messer Griesheim GmbH
FA 4 Widerstandsschweißen	<i>DrIng. M. Emonts</i> GTIM Industrie - F	<i>DrIng. H. Beenken</i> Thyssen Krupp Stahl AG
FA 5	<i>Dr. rer. nat. A. Moritz</i>	<i>DiplIng. P. Knepper</i>
Sonderschweißverfahren	Robert Bosch GmbH	Airbus Deutschland GmbH
FA 6	<i>DrIng. U. Reisgen</i>	<i>DrIng. R. Holtz</i>
Strahlverfahren	Forschungszentrum Jülich GmbH	LASAG AG - CH
FA 7	H. van't Hoen	<i>DrIng. H. Schmoor</i>
Löten	Chemet GmbH	BrazeTec GmbH
FA 8	<i>Prof. DrIng. T. Reiner</i>	<i>DrIng. H. Stepanski</i>
Klebtechnik	Siebe Engineering GmbH	Bayer AG
FA 9 Konstruktion und Berechnung	<i>DrIng. M. Kaßner</i> Alstom LHB GmbH	<i>DrIng. G. Zhang</i> Volkswagen AG
FA 10	<i>DrIng. G. Schmitz</i>	DiplIng. K. Lindner
Mikroverbindungstechnik	Robert Bosch GmbH	UNITEK EAPRO GmbH
FA 11	<i>DrIng. M. Gehde</i>	DrIng. J. Natrop
Kunststoff-Fügen	Wegener GmbH	Bielomatik Leuze GmbH & Co

Gremien

Sitzungen des Vorstands der Forschungsvereinigung fanden statt im Januar 2002 im Rahmen des Jahresempfangs der Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF) in Köln und im Juli 2002 in Düsseldorf.

Forschungsrat, Mitgliederforum, Mitgliederversammlung

Im Schwerpunkt dieser Sitzungen stand die Strategiediskussion in den Fachausschüssen und in der Forschungsvereinigung. Die Zusammensetzung des Forschungsrats ist in Bild 11 zusammengefasst, die Mitglieder des Forschungsrats sind in Bild 12 genannt.

Zusammensetzung des Vorstands der Forschungsvereinigung

Dr. rer. nat. Alfward Farwer

Meerbusch, Vorsitzender der Forschungsvereinigung

Prof. Dr.-Ing. Thomas Reiner (stellvertretender Vorsitzender)

Siebe Engineering GmbH&Co KG, Fernthal Vorsitzender des Fachausschusses 8 Mitglied im Präsidium der Arbeitsgemeinschaft industrieller Forschungsvereinigungen "Otto von Guericke" e.V.

Dr.-Ing. Godehard Schmitz (stellvertretender Vorsitzender)

Robert Bosch GmbH, Stuttgart Vorsitzender des Fachausschusses 10

Sitzungen der Fachausschüsse

Von den 21 Sitzungen der Fachausschüsse im Berichtszeitraum haben acht in Forschungsinstituten oder in Unternehmen stattgefunden, 13 Sitzungen haben in Düsseldorf stattgefunden. Im folgenden sind die externen Sitzungen aufgelistet:

Fachausschuss 1

Sitzung im Unterwassertechnikum der Universität Hannover

Fachausschuss 4

Sitzung im Rahmen des gemeinsamen Kolloquiums mit der Arbeitsgruppe V 3 bei der ISE Innomotive Systems Europe GmbH, Bergneustadt

Fachausschuss 5

Sitzung in der SLV München, GSI mbH

Fachausschuss 6

Sitzung im Laserzentrum Hannover

Fachausschuss 7

Sitzungen am Lehrstuhl für Verbundwerkstoffe der Technischen Universität Chemnitz und am Fraunhofer-Institut für Siliziumtechnologie in Itzehoe

Fachausschuss 9

Sitzung im Fraunhofer-Institut für Betriebsfestigkeit in Darmstadt

Fachausschuss 10

Bild 11

Sitzung im Rahmen des Gemeinschaftskolloquiums mit der Arbeitsgruppe A 2 an der Staatlichen Materialprüfanstalt, Universität Stuttgart.

2 Ehrenmitglieder

FV-Vorsitzender

2 stellvertretende FV-Vorsitzende

(zugleich FA-Vorsitzende)

DVS-Präsident AfT-Vorsitzender

8 FA-Vorsitzende

2 Geschäftsführer

▶ 15 ex officio Mitglieder

1 AiF-Vertreter

1 Gast

1 Verband

9 Unternehmen

15 Institute

≥ 25 gewählte Mitglieder

(darunter 1 FA-Vorsitzender)

▶ 40 Mitglieder des Forschungsrates

(ohne Ehrenmitglieder/Gast; max. 45 Mitglieder laut Satzung) (darunter 19 Unternehmen und 16 Forschungsstellen)

Zusammensetzung des Forschungsrates Mai 2003

Mitglieder des Forschungsrates

Vorsitzender der Forschungsvereinigung (ex officio Mitglied)

Dr. rer. nat. A. Farwer, Merbusch

Stellvertretende Vorsitzende der Forschungsvereinigung (ex officio Mitglieder)

Prof. Dr.-Ing. T. Reiner, Siebe Engineering GmbH & Co KG, Fernthal Vorsitzender des FA 8

Dr.-Ing. G. Schmitz, Robert Bosch GmbH, Stuttgart

Ehrenmitglieder

Dortmund

Dr.-Ing. W. Lehrheuer Aachen Prof. Dr.-Ing. Dr.-Ing. E. h. H.-D. Steffens

Vorsitzender des FA 10

Gewählte Mitglieder (Amtszeit von 01.05.2001 bis 30.04.2005)

Prof. Dr.-Ing. F. W. Bach Universität Hannover

Prof. Dr.-Ing. D. Böhme SLV München GSI mbH

Prof. Dr.-Ing. T. Böllinghaus BAM, Berlin

Prof. Dr.-Ing. U. Draugelates Goslar

Dipl.-Ing. J. Gamalski Siemens AG, Berlin

Prof. Dr.-Ing. Dr.-Ing. E. h. H. Haferkamp

Laserzentrum Hannover

Prof. Dr.-Ing. O. Hahn Universität Paderborn

Prof. Dr.-Ing. habil. Dr. E.h.

H. Herold

Universität Magdeburg

Dr.-Ing. S. Keitel SLV Halle GmbH

Prof. Dr.-Ing. habil. G. Köhler IFW GmbH, Jena

Dr.-Ing. M. Koschlig Vautid Verschleiß-Technik Dr.-Ing. Hans Wahl GmbH Ostfildern/Stuttgart

Dipl.-Ing. K. Lindner UNITEK EAPRO GmbH

Puchheim

Prof. Dr. techn. E. Lugscheider RWTH Aachen

Prof. Dr.-Ing. habil. K.-J. Matthes Technische Universität Chemnitz

Dipl.-Ing. S. Müller AUDI AG, Neckarsulm

Prof. Dr.-Ing. P. Puschner ELMA IVG, Aachen

Dr.-Ing. P. Rippl KUKA Schweißanlagen und Roboter GmbH, Augsburg

Dr.-Ing. H. Schmoor Braze Tec GmbH, Hanau

Dr.-Ing. E. Schubert Alexander Binzel Schweißtechnik GmbH & Co KG, Buseck

Prof. Dr.-Ing. E. h. Dr.-Ing. habil. P. Seyffarth

SLV Mecklenburg-Vorpommern, Rostock

Dr.-Ing. S. Trube

Cloos Innovations-GmbH, Herborn (gleichzeitig Vorsitzender

des FA 3)

Prof. Dr.-Ing. B. Wielage Technische Universität Chemnitz

Dr.-Ing. H.-J. Wieland Verein Deutscher Eisenhüttenleute Düsseldorf

Dr.-Ing. R. Winkler SLV Duisburg GSI mbH

Prof. Dr.-Ing. H. Wohlfahrt Technische Universität Braunschweig

Vorsitzende der Fachausschüsse (ex officio Mitglieder)

Dr. Ing. H. Nies, Oerlikon Schweißtechnik GmbH, Eisenberg, Vorsitzender des FA 1 Dr.-Ing. H. Reimann, Gotek GmbH, Frankfurt Vorsitzender des FA 2

Dr.-Ing. M. Emonts, GTIM Industrie, La Chevroliere/F Vorsitzender des FA 4

Dr. rer. nat. A. Moritz, Robert Bosch GmbH, Stuttgart Vorsitzender des FA 5

Dr.-Ing. U. Reisgen, Forschungszentrum Jülich GmbH, Vorsitzender des FA 6

H. van't Hoen, Chemet GmbH, Wirges Vorsitzender des FA 7

Dr.-Ing. M. Kaßner, Alstom LHB GmbH, Salzgitter Vorsitzender des FA 9

Dr.-Ing. M. Gehde, Wegener GmbH, Aachen Vorsitzender des FA 11

Gast

Dr.-Ing. M. Maurer Arbeitsgemeinschaft industrieller Forschungsvereinigungen, Köln

Mitglieder laut Satzung (ex officio Mitglieder)

Dr.-Ing. A. Gärtner EUROPIPE GmbH, Ratingen Präsident des DVS

Prof. Dr.-Ing. U. Dilthey RWTH Aachen

Vorsitzender des Ausschusses für Technik des DVS

Prof. Dr.-Ing. D. von Hofe Hauptgeschäftsführer des DVS

Dr.-Ing. K. Middeldorf Geschäftsführer der Forschungsvereinigung des DVS

Mitwirkung in der AiF

Auch im Jahr 2002 unterstützte die Forschungsvereinigung des DVS die Tätigkeit der AiF bei ihrer Arbeit in der industriellen Gemeinschaftsforschung. Einer der Schwerpunkte der Mitwirkung war die Teilnahme an Sitzungen des Geschäftsführerbeirates der AiF.

Im Fokus standen hier insbesondere die Eigenleistungserhebungen, forschungspolitische Aktivitäten sowie Beratungen über ein neues Regelwerk der industriellen Gemeinschaftsforschung.

In diesem Zusammenhang hat die Forschungsvereinigung an Beratungen mit dem Bundesministerium für Wirtschaft und Arbeit (BMWA) und dem Bundesrechnungshof (BRH) teilgenommen. Zu nennen sind ebenfalls die Teilnahme an der **Mitgliederversammlung** der AiF und am **AiF-Innovationstag** im Juni 2002 in Berlin.

Der stellvertretende Vorsitzende der Forschungsvereinigung Herr Professor Reiner hat in seiner Eigenschaft als Mitglied des AiF-Präsidiums an Sitzungen des Geschäftsführerbeirates sowie an der Mitgliederversammlung der AiF teilgenommen.

In zwei AiF-Geschäftsführerkreisen (Düsseldorfer Geschäftsführerkreis und Westdeutscher Geschäftsführerkreis) ist die For-

schungsvereinigung kontinuierlich vertreten.

Die Forschungsvereinigung war maßgeblich an der Vorbereitung und Durchführung des Statusseminars Industrielle Gemeinschaftsforschung in Nordrhein Westfalen "Dienstleistung und Fertigung – Innovationen für den Mittelstand" im Januar 2002 beteiligt.

Die Forschungsvereinigung wird auch zukünftig die verbands- und forschungspolitischen Aktivitäten der AiF nachhaltig unterstützen.

2 Fügetechnische Gemeinschaftsforschung 2002

Forschungsvorhaben und Fördermittel

Im Jahr 2002 wurden von der Forschungsvereinigung insgesamt 106 Forschungsvorhaben betreut, für die 6.677.070 Euro Fördermittel von der AiF eingeworben werden konnten. An den Forschungsvorhaben des Jahres 2002 nahmen 35 Forschungsinstitute mit insgesamt 165 Beteiligungen teil.

Auf die verschiedenen Gruppen der Forschungsinstitute entfielen

1,1 Mio. Euro oder 16,2% auf DVS-Institute (26 Beteiligungen)

4,2 Mio. Euro oder 63,2% auf Hochschulinstitute (106 Beteiligungen)

1,0 Mio. Euro oder 15,2% auf Fraunhofer-Institute (24 Beteiligungen)

und 0,4 Mio. Euro oder 5,4% auf sonstige Forschungsinstitute (9 Beteiligungen).

Bild 13 zeigt die Verteilung der Verteilung dieser Vorhaben nach Laufzeitbeginn bzw. Laufzeitende mit Angaben zu den Beteiligungen der Forschungsinstitute. In der Dokumentation im Anhang sind alle Vorhaben mit ihren Titeln und den jeweils beteiligten Forschungsinstituten zusammengefasst.

Neu begonnene Forschungsvorhaben

Nach einer Evaluation durch die AiF-Gutachter und durch den Bewilligungsausschuss der AiF konnten im Berichtszeitraum 26 Forschungsvorhaben aus Haushaltsmitteln des Bundesministeriums für Wirtschaft und Arbeit (BMWA) neu begonnen werden. An diesen neu begonnenen Forschungsvorhaben sind 21 Forschungsinstitute und rund 140 Unternehmensvertreter als Pro-

jektbegleiter beteiligt. Die Verteilung der neu begonnenen Vorhaben auf die Fachausschüsse zeigt Bild 14. Titel der Vorhaben und Forschungsinstitute zeigen die Übersichten 4 und 5 in der Dokumentation im Anhang.

Fortgeführte Forschungsvorhaben

Im Berichtszeitraum wurden 27 Forschungsvorhaben, die zum größten Teil im Jahr 2001 begonnen wurden, fortgeführt. An diesen fortgeführten Forschungsvorhaben sind 21 Forschungsinstitute und über 200 Unternehmensvertreter als Projektbegleiter beteiligt (vergleiche die Übersich-

Fa	chausschuss	Anzahl der begonnenen Vorhaben		
1	Metallurgie und Werkstofftechnik	3		
2	Thermisches Beschichten und	, and the second		
_	Autogentechnik	1		
3	Lichtbogenschweißen	3		
	Widerstandschweißen	3		
5	Sonderschweißverfahren	4		
6	Strahlverfahren	2		
7		1		
8	Klebtechnik	2		
9	Konstruktion und Berechnung	1		
10	Mikroverbindungstechnik	6		
11	Kunststoff-Fügen	<u>-</u>		
Ge	esamtanzahl	26		
<u></u>	Neubegonnene Vorhabe	en 2002		

Bild

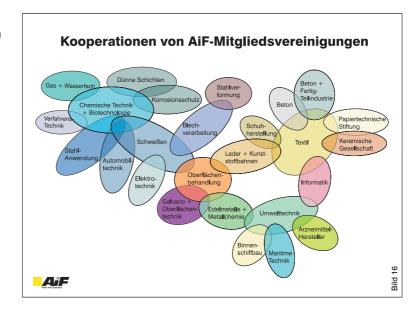
	Anzahl der	Anzahl der	I	Anzahl der Bet	teiligungen	
	Forschungs- vorhaben	beteiligten Forschungsinstitute	Gesamt	DVS-Institute	Hochschul- institute	Sonstige Institute
Neubegonnene Forschungsvorhaben	26	21	43	10	21	12
Fortgeführte Forschungsvorhaben	27	21	41	5	27	9
Abgeschlossene Forschungsvorhaben Schlußberichte 2002	27	22	39	5	29	5
2003	26	28	42	l 6	29	7

DVS

Forschungsvorhaben 2002

ten 6 und 7 in der Dokumentation). Diese fortgeführten Vorhaben wurden in den Fachausschüssen diskutiert. Wesentliche Forschungsergebnisse konnten dadurch bereits während der Laufzeit der Vorhaben auf eine industrielle Anwendung geprüft werden. Die Verteilung der fortgeführten Vorhaben auf die Fachausschüsse zeigt Bild 15.

Fa	chausschuss	Anzahl der fortgeführten Vorhaben	
		_	-
1	Metallurgie und Werkstofftechnik	5	
2	Thermisches Beschichten und		
	Autogentechnik	4	
3	Lichtbogenschweißen	4	
4	Widerstandschweißen	1	
5	Sonderschweißverfahren	2	
6	Strahlverfahren	2	
7	Löten	4	
8	Klebtechnik	2	
9	Konstruktion und Berechnung	3	
10	Mikroverbindungstechnik	<u>-</u>	
11	Kunststoff-Fügen	-	
Ge	esamtanzahl	27	,
FORSO-LUNG	Fortgeführte Vorhaber	1 2002	Bild 15


Initiativprogramm der AiF

Die Forschungsvereinigung des DVS engagiert sich mit ihren Forschungsinstituten und Unternehmen auch im Initiativprogramm der AiF "Zukunftstechnologien für kleine und mittlere Unternehmen". Ein Forschungsvorhaben in diesem Initiativprogramm konnte im Jahr 2002 bereits abgeschlossen werden, sechs weitere Forschungsvorhaben wurden fortgeführt. Die Mitglieder der jeweiligen projektbegleitenden Ausschüsse und die Fachausschüsse der beteiligten Forschungsvereinigungen begleiten diese Vorhaben kontinuierlich und analysieren den Verwertungsplan für die angestrebten Ergebnisse.

Die Forschungsvereinigung des DVS kooperiert in diesen Vorhaben mit den folgenden Forschungsvereinigungen:

Automobiltechnik Blechverarbeitung Chemische Technik und Biotechnologie Elektrotechnik Stahlanwendung

Bild 16 zeigt in einer Auswertung der AiF die Kooperationen zwischen AiF-Mitgliedsvereinigungen im Rahmen des Initiativprogramms. Die Forschungsvereinigung wird diese Kooperationen fortführen und mit anderen Forschungsvereinigungen ergänzen. Die Planungen für neue Forschungsanträge werden Anfang des Jahres 2003 konkretisiert.

Übersicht

über Forschungsvorhaben im Initiativprogramm der AiF

"Zukunftstechnologien für kleinere und mittlere Unternehmen (Zutech)"

"Oberflächentechnik für die Bearbeitung bleifreier Lote in Lötmaschinen"

<u>Laufendes Forschungsvorhaben</u> der Forschungsvereinigung des DVS (Koordination) und der Forschungsvereinigung des ZVEI

Forschungsstellen: TU Chemnitz, Lehrstuhl für Verbundwerkstoffe RWTH Aachen, Lehr- und Forschungsgebiet Werkstoffwissenschaften

Universität Hannover, Institut für Werkstoffkunde

"Verarbeitbarkeit und Zuverlässigkeit der bleifreien Lote für Reflow-Wellen- und Reparaturlöten"

Laufendes Forschungsvorhaben der Forschungsvereinigung des DVS (Koordination) und der Forschungsvereinigung des ZVEI

Forschungsstellen:

Fraunhofer Institut für Zuverlässigkeit und Mikrointegration Berlin

Fraunhofer Institut für Siliziumtechnologie Itzehoe Technische Universität München, Lehrstuhl für Werkstoffe im Maschinenbau

"Untersuchungen zur Steigerung der Verschleißfestigkeit von Magnesiumlegierungen"

<u>Abgeschlossenes Forschungsvor-</u> <u>haben</u> der Forschungsvereinigung des DVS Forschungsstellen:

Gesellschaft für Fertigungstechnik und Entwicklung Schmalkalden Technische Universität Clausthal, Institut für Schweißtechnik und Trennende Fertigungsverfahren

"Untersuchung zum Umformverhalten von mit reaktiven Hotmelts vorbeschichteten Feinblechen und Halbzeugen"

Laufendes Forschungsvorhaben der Europäischen Forschungsgesellschaft für Blechverarbeitung (Koordination) mit der Forschungsvereinigung des DVS

Forschungsstellen: RWTH Aachen, Lehr- und Forschungsgebiet Klebtechnik Technische Universität Dresden, Professur für Umform- und Urformtechnik

"Praxisorientierte Untersuchungen zum Füge-, Umform- und Korrosionsverhalten neuartiger austenitischer Blech-Sandwich-Strukturen"

<u>Laufendes Forschungsvorhaben</u> der DECHEMA (Koordination) mit der Forschungsvereinigung des DVS

Forschungsstellen:
Technische Universität Clausthal,
Institut für Schweißtechnik und
Trennende Fertigungsverfahren
Technische Universität Clausthal,
Institut für Metallurgie
Otto-von-Guericke Universität
Magdeburg, Institut für Werkstoff-

technik und Werkstoffprüfung

"Methodenentwicklung zur Berechnung und Auslegung geklebter Stahlbauteile für den Fahrzeugbau"

Laufendes Forschungsvorhaben der Studiengesellschaft Stahlanwendung (Koordination) mit DECHEMA, Fachsektion Klebtechnik, Forschungsvereinigung Automobiltechnik und Forschungsvereinigung des DVS

3 Forschungsstellen:
Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung, Bremen
Laboratorium für Werkstoff- und
Fügetechnik, Universität Paderborn
Institut für Werkstofftechnik,
Universität Kassel

"Simultane Herstellung von Mikrovias durch kombinierte Mikroumform- und Fügetechnik"

Laufendes Forschungsvorhaben der Forschungsvereinigung des DVS Koordination) und der Forschungsvereinigung des ZVEI

Forschungsstellen:

Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration Berlin Technische Universität Dresden, Institut für Halbleiter und Mikrosystemtechnik

Forschungsergebnisse und Transfer

Im Jahr 2002 wurden für 53 abgeschlossene Vorhaben Schlussberichte und Veröffentlichungen vorgelegt. Es erfolgte eine kritische Diskussion und Bewertung der Forschungsergebnisse in den Fachausschüssen (vergleiche dazu die Verteilung der abgeschlossenen Vorhaben auf die Fachausschüsse in Bild 17). Von 27 abgeschlossenen Forschungsvorhaben wurden die Schlussberichte im Jahr 2002 vorgelegt, von 26 abgeschlossenen Forschungsvorhaben werden die Schlussberichte Anfang des Jahres 2003 vorgelegt. Die Übersichten 8 bis 11 fassen die Titel der abgeschlossenen Forschungsvorhaben und die Beteiligungen der Forschungsinstitute zusammen.

Entscheidend für den Transfer der erzielten Forschungsergebnisse in die industrielle Anwendung sind die Mitglieder in den Projektbegleitenden Ausschüssen, die die einzelnen Vorhaben begleiten, und die Mitglieder in den Fachausschüssen der Forschungsvereinigung, die ebenfalls ausführlich und zu einem frühen Zeit-

	Anzahl der abgeschlossenen Vorha		
	Vorlage des S 2002	chlußberichtes 2003	
1 Metallurgie und Werkstofftechnik	3	1	
2 Thermisches Beschichten und			
Autogentechnik	2	2	
3 Lichtbogenschweißen	5	1	
4 Widerstandschweißen	3	4	
5 Sonderschweißverfahren	2	3	
6 Strahlverfahren	3	3	
7 Löten	3	3	
8 Klebtechnik	-	2	
9 Konstruktion und Berechnung	4	3	
10 Mikroverbindungstechnik	2	2	
11 Kunststoff-Fügen	-	2	
Gesamtanzahl	27	26	
Abgeschlossene Vorha	•		

punkt über die Forschungsergebnisse informiert werden. Neben diesem direkten Transfer der Ergebnisse sind die Veröffentlichungen der Ergebnisse in Fachzeitschriften und anderen Publikationsorganen – besonders in den Kongressbänden des DVS-Verlages – und die Weitergabe der Schlussberichte zu nennen.

In den Übersichten 12 bis 14 sind die Veröffentlichungen zusammengefasst, die sich auf Vorhaben der fügetechnischen Gemeinschaftsforschung in den Fachzeitschriften des DVS-Verlages beziehen (Schweißen und Schneiden, der praktiker, VTE). Im Jahr 2002 sind 28 Veröffentlichungen in diesen Fachzeitschriften erfolgt. Spätestens mit diesen Veröffentlichungen stehen die Ergebnisse der gesamten Fachwelt zur Verfügung.

Als weitere erfolgreiche Transfermaßnahme wurde auch im Jahre 2002 die Große Schweißtechnische Tagung des DVS in Kassel mit einer umfangreichen Berichterstattung über Forschungsvorhaben der fügetechnischen Gemeinschaftsforschung genutzt.

Große Schweißtechnische Tagung 2002

Beiträge zum Forum Forschung und Entwicklung mit den folgenden Schwerpunkten:

Kaltgasspritzen

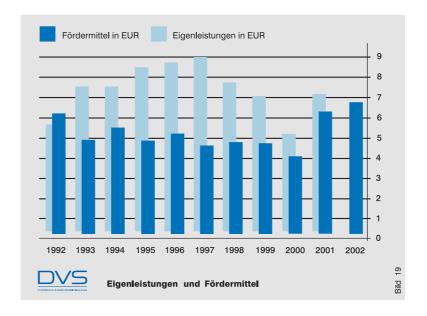
Boridverstärkte Oberflächen an Titanlegierungen

Auftragschweißen mit ausscheidungshärtbaren Nickelbasis-Superlegierungen

MIG-Schweißen von Aluminiumlegierungen

Plasma-MIG-Schweißen von Aluminiumlegierungen

Schwingfestigkeit geschweißter dünnwandiger Aluminiumbauteile



Förschungsvorhaben, Fördermittel und Eigenleistungen

Bild 18 zeigt die Zahl der von der Forschungsvereinigung betreuten Vorhaben in den Jahren 1991 bis 2002. Bild 19 zeigt die Gegenüberstellung der für diese Vorhaben eingeworbenen Fördermittel der AiF und die aufgebrachten industriellen Eigenleistungen. Die öffentliche Förderung durch die AiF und das BMWA erfolgt als Hilfe zur Selbsthilfe der Wirtschaft, was sich besonders durch die industriellen Eigenleistungen der Forschungsvereinigung ausdrückt. Diese Eigenleistungen werden von den Unternehmen direkt für die Planung und Durchführung der Forschungsvorhaben aufgewendet, zusätzlich werden Leistungen des DVS zur Finanzierung der Arbeit der Forschungsvereinigung aufgebracht.

Die Forschungsvereinigung des DVS wird auch für das Jahr 2002 dem Grundsatz folgen, dass den öffentlichen Fördermitteln industrielle Eigenleistungen in mindestens der gleichen Höhe gegenüber gestellt werden.

Forschungsplanung 2002

Als Ergebnis einer breit angelegten fachlichen Diskussion der Forschungsbedarfe in der Fügetechnik konnten im Jahr 2002 55 **Anträge** der fügetechnischen Gemeinschaftsforschung bei der AiF zur Begutachtung und Förderung eingereicht werden. An diesen Forschungsanträgen sind 29 Forschungsinstitute (DVS-Forschungsinstitute mit 10 %, Hochschulinstitute mit 72 % und sonstige Institute mit 18 %) und über 300 Unternehmensvertreter als Projektbegleiter beteiligt. Die Titel der eingereichten Anträge und die beteiligten Forschungsinstitute sind in den Übersichten 15 und 16 der Dokumentation zusammengestellt.

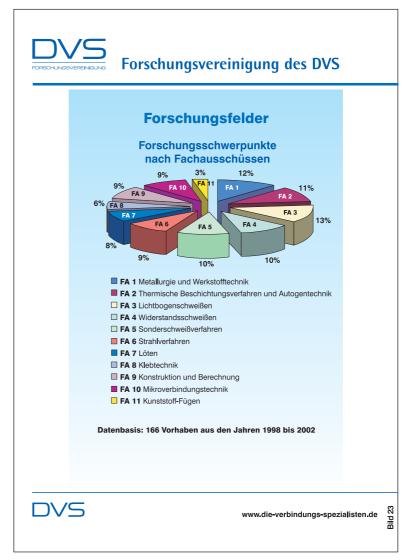
Weiterhin wurden von den Fachausschüssen 87 Kurzanträge beraten, davon wurden 61 Kurzanträge zur Ausarbeitung als AiF-Antrag befürwortet. An den befürworteten Kurzanträgen sind DVS-Institute mit 14 %, Hochschulinstitute mit 61 % und sonstige Institute mit 25 % beteiligt. In den Übersichten 17 und 18 sind Titel und beteiligte Forschungsinstitute genannt. Bild 20 fasst diese Angaben zur Forschungsplanung 2002 zusammen.

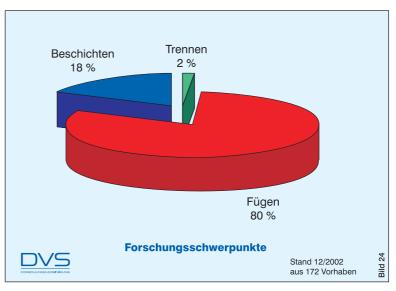
	Anzahl der Anträge bzw.	Anzahl der beteiligten		Anzahl der Bei		
	Kurzanträge	Forschungsinstitute	Gesamt	DVS-Institute	Hochschul- institute	Sonstige Institute
Bei der AiF eingereichte Anträge	55	29	68	7	49	12
Kurzanträge in den Fachausschüssen	87	38	110	18	70	22
Befürwortete Kurzanträge in den Fachausschüssen	61	34	77	11	47	19
	Forschu	ngsplanung 2002				

Die Verteilungen der AiF-Anträge und die Kurzanträge auf die Fachausschüsse sind in den Bildern 21 und 22 gezeigt.

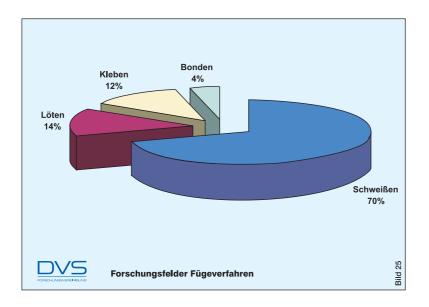
	Fachausschuss	2002 beantragte Vorhaben	
1	Metallurgie und Werkstofftechnik	7	-
2	Thermisches Beschichten und Autogentechnik	3	-
3	Lichtbogenschweißen	8	-
4	Widerstandschweißen	2	-
5	Sonderschweißverfahren	4	
6	Strahlverfahren	5	
7	Löten	6	-
8	Klebtechnik	5	
9	Konstruktion und Berechnung	5	
10) Mikroverbindungstechnik	6	
11	Kunststoff-Fügen	4	
	Summe	55	
FOR90	Anträge und	Begutachtung 2002	Bild 21

Fachausschuss	Anzahl der Kurzanträge	Befürwortete Kurzanträge
1 Metallurgie und Werkstoff	echnik 8	4
2 Thermisches Beschichten Autogentechnik	und 7	6
3 Lichtbogenschweißen	13	10
4 Widerstandschweißen	4	3
5 Sonderschweißverfahren	5	5
6 Strahlverfahren	10	6
7 Löten	7	6
8 Klebtechnik	7	5
9 Konstruktion und Berechn	ung 8	4
10 Mikroverbindungstechnik	12	8
11 Kunststoff-Fügen	12	4
Summe	87	61


3 Perspektiven der fügetechnischen Gemeinschaftsforschung

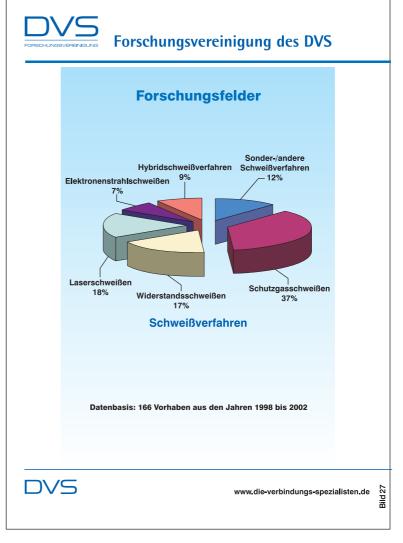

Für die Forschungsvereinigung und ihre Mitglieder bleibt das System der AiF-Forschung ein Grundpfeiler der fügetechnischen Gemeinschaftsforschung. Die Ausweitung dieser Forschung mit anderen Förderorganisationen muß jedoch ebenfalls geprüft werden. Wesentlich ist auch die Nutzung des DVS-Forschungsfonds zur industriefinanzierten Gemeinschaftsforschung.

Optimierung der fügetechnischen Gemeinschaftsforschung in der AiF


Im Jahr 2003 werden die Ergebnisse der Strategiediskussionen in den Fachausschüssen der Forschungsvereinigung zusammengefasst. Die zukünftige Strategie muss eine noch stärkere inhaltliche Fokussierung durch Schwerpunktsetzung und eine noch weiter optimierte Forschungsplanung beinhalten. Die zukünftige fügetechnische Gemeinschaftsforschung muss sich auf solche Vorhaben konzentrieren, mit denen sich deutliche Technologiefortschritte erreichen lassen. Die Fachausschüsse können dazu entsprechende Schwerpunktthemen identifizieren. Neben (neuen) Technologien mit hohen Entwicklungspotentialen werden dabei auch (etablierte) Technologien verfolgt werden. Prozessoptimierungen und Erschließung weiterer Aufgabenfelder werden auch in Zukunft notwendig sein, insbesondere dann, wenn sich für etablierte Technologien neue Anwendungen ergeben.

Grundlage für die Strategiediskussion in der Forschungsvereinigung ist eine Analyse der Forschungsvorhaben aus den Jahren 1998 bis 2002. Bild 23 zeigt die Verteilung der in diesem Zeitraum begonnenen Forschungsvorhaben auf die Fachausschüsse.

Forschungsvorhaben zum Bereich Fügen überwiegen mit 80 %, Forschungsvorhaben zum Bereich Beschichten nehmen 18 % ein, der Bereich Trennen ist mit einzelnen Forschungsvorhaben vertreten (Bild 24). Bei den Forschungsvorhaben im Bereich Fügen überwiegt das Schweißen mit 70% der Vorhaben, Löten ist mit 14% und Kleben mit 12% beteiligt. 4% der Forschungsvorhaben befassen sich mit dem Bonden (Bild 25).


Eine Analyse der Forschungsfelder zeigt in Bild 26 die Leichtmetalle mit 46% (Aluminiumlegierungen und Magnesiumlegierungen zusammengerechnet), Stähle mit 24% und Werkstoffkombinationen sind mit 15 % an den Forschungsfeldern beteiligt.

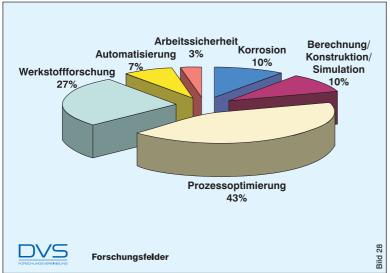


Bild 27 zeigt die Schwerpunkte in den Forschungsvorhaben ausgewertet nach einzelnen Schweißverfahren: das Schutzgasschweißen ist mit 37 % und die Strahlschweißverfahren sind mit 25 % (letztere mit steigender Tendenz) beteiligt. Hybridschweißverfahren sind ebenfalls bei steigender Tendenz mit 9% an den aktuellen Vorhaben beteiligt.

Eine Gesamtbetrachtung in Bild 28 zeigt Schwerpunkte der Forschungsarbeiten auf den Gebieten Prozessoptimierung mit 43 % und werkstofforientierte Forschungsvorhaben mit 27 %. Der Bereich Berechnung, Konstruktion und Simulation beträgt gegenwärtig bei steigender Tendenz 10 %.

Weitere Vernetzung der fügetechnischen Gemeinschaftsforschung

Mit dem Ziel, die fügetechnische Gemeinschaftsforschung noch weiter am Bedarf der Unternehmen zu orientieren, wird die Forschungsplanung intensiviert. Der Kreis der potentiellen Nutzer der Forschungsergebnisse kann dadurch noch erweitert werden. Diese Ziele lassen sich durch eine weitere Vernetzung mit Gremien innerhalb des DVS und mit Organisationen außerhalb des DVS erreichen.

Vernetzung mit Gremien innerhalb des DVS

Innerhalb des DVS sind bezüglich der Vernetzung gute Fortschritte erreicht worden. Zwischen Arbeitsgruppen im Ausschuss für Technik und Fachausschüssen der Forschungsvereinigung werden Gemeinschaftskolloquien durchgeführt. Diese Gemeinschaftskolloquien unterstützten den gegenseitigen Erfahrungsaustausch zwischen der Forschung und der Regelwerksarbeit wesentlich. Forschungsergebnisse können dadurch schneller in die Regelwerksarbeit einfließen. Aus der Regelwerksarbeit resultierende Forschungsansätze können wiederum direkt in die Arbeit der Fachausschüsse einfließen.

Konkrete Ansätze der Vernetzung werden bereits in den folgenden Bereichen verfolgt:

Klebtechnik Löten Mikrofügetechnik thermisches Spritzen Widerstandsschweißen.

Im Jahr 2003 wird die Vernetzung auch in den Bereichen Lichtbogenschweißen und Strahlschweißverfahren fortgeführt.

Eine ebenfalls geplante Vernetzung mit den Gruppen im Ausschuß für Bildung kann zukünftige weitere Anwendungsfelder erschließen.

Vernetzung mit Organisationen außerhalb des DVS

Außerhalb des DVS wird die Kooperation mit anderen Forschungsvereinigungen fortgesetzt (vergleiche dazu auch die Angaben zum Initiativprogramm der AiF in Kapitel 2). Diese Kooperationen gehen zum Teil bereits über die Planung und Durchführung von gemeinsamen Forschungsvorhaben hinaus. Im Bereich der Klebtechnik ist bereits ein tragfähiges

Netzwerk für die gemeinsame Forschung entstanden (Bild 29). Im Jahr 2002 wurde das 2. Kolloquium "Gemeinsame Forschung in der Klebtechnik" durchgeführt. Das 3. Kolloquium findet im Februar 2003 in Düsseldorf statt, das Kolloquium im Jahr 2004 ist bereits in Planung.

Plattform für die klebtechnische Gemeinschaftsforschung

Deutsche Gesellschaft für DECHEMA e.V. chemische Technik und Biotechnologie e. V.

Forschungsvereinigung Automobiltechnik e. V.

Studiengesellschaft Stahlanwendung e. V.

Forschungsvereinigung Schweißen und verwandte Verfahren e. V. des DVS

Industrieverband Klebstoffe e. V.

Bild 29

Die Inhalte der Kolloquien verschieben sich von der Berichterstattung über abgeschlossene und laufende Forschungsvorhaben zunehmend in die Planungs- und Vorbereitungsphase von Vorhaben. In diesem Sinne leisten solche gemeinsamen Kolloquien auch Beiträge zu den Forschungsstrategien der beteiligten Vereinigungen.

Ähnliche Initiative ergeben sich auf dem Gebiet der gemeinsamen Forschung im Korrosionsschutz, hier wird im Jahr 2003 ein erstes Kolloquium zu Problemlösungen für den metallischen Leichtbau durchgeführt. Die Planung weiterer Kolloquien hat begonnen.

Die Forschungsvereinigung verfolgt als dritten Bereich gemeinsam mit anderen Forschungsvereinigungen die Planung von abgestimmten Forschungsvorhaben zum Thema "Festigkeit von gefügten Bauteilen". Ein Konzept mit Forschungsideen wird im Jahr 2003 vorgelegt.

Ausweitung der fügetechnischen Gemeinschaftsforschung - national

Im Bereich der Forschungsförderung durch das Bundesministerium für Bildung und Forschung (BMBF) hat sich die Forschungsvereinigung auch im Jahr 2002 aktiv an Vorbereitung und Durchführung von DVS-Seminaren beteiligt.

Mit solchen Forschungsseminaren sollen Unternehmen und Forschungsinstituten regelmäßig Foren für aktuelle Fragen der fügetechnischen Forschung erhalten. Schwerpunkt dieser Forschungsseminare sind zukünftige Forschungsfelder und entsprechende Forschungsstrategien, die mit dem BMBF und seinen Projektträgern diskutiert werden.

DVS-Forschungsseminare

Fügetechniken für neue Werkstoffe Fügetechniken für den Leichtbau Fügbarkeit von Bauteilen aus innovativen Werkstoffen Fügetechniken im innovativen Anlagenbau.

Im Januar 2002 wurde ein weiteres DVS-Forschungsseminar zum Thema "Auslegung von gefügten metallischen Konstruktionen" durchgeführt, das wiederum auf eine große Zustimmung bei Industrieunternehmen und Forschungsinstituten stieß. Die im Zusammenhang mit diesem DVS-Forschungsseminar vorgelegten Studie von der Schweißtechnischen Lehr- und Versuchsanstalt Halle GmbH dokumentiert auf der Basis einer umfangreichen Unternehmensbefragung den allgemeinen Stand der Berechnung und Konstruktion in den Bereichen Automobilbau, Maschinenbau, Nutzfahrzeugbau, Schienenfahrzeugbau, Schiffbau, Leichtmetall, Stahlbau, Rohrleitungsbau.

In dieser Studie werden explizite Angaben zum Forschungsbedarf bei der Auslegung von gefügten metallischen Konstruktionen gemacht. Dabei werden die Auswirkungen neuerer Schweißtechnologien, die Erfassung der Nahtqualität, der Einsatz von Nachbehandlungsverfahren sowie verschiedene Ermüdungsfestigkeitskonzepte berücksichtigt. Es werden Schwerpunkte für zukünftige Forschungsarbeiten herausgearbeitet.

Die Studie ist den Mitgliedern des DVS zur Verfügung gestellt worden. Ferner ist sie veröffentlicht und liegt den Förderorganisationen vor. Die Ergebnisse der Studie und die Ergebnisse des DVS-Forschungsseminars werden bei der Planung von Forschungsarbeiten in der Forschungsvereinigung des DVS sowie in der oben genannten Initiative "Festigkeit von gefügten Bauteilen"

mit anderen Forschungsorganisationen berücksichtigt.

Im Berichtszeitraum ist auch das DVS-Forschungsseminar 2003 vorbereitet worden. In diesem DVS-Forschungsseminar werden Konzepte zum Fügen im Produktlebenszyklus diskutiert.

DVS-Forschungsseminare werden weitergeführt – mittels Forschungsstudien, Einzelprojekten und gezielten Kooperationen mit den Projektträgern lässt sich die fügetechnische Gemeinschaftsforschung über den Bereich der von der AiF und dem BMWA öffentlich geförderten fügetechnischen Gemeinschaftsforschung hinaus auszudehnen.

Ausweitung der fügetechnischen Gemeinschaftsforschung – europäisch

Im Berichtszeitraum 2002 hat die Forschungsvereinigung konkrete Ansätze zur Beteiligung an Maßnahmen der Europäischen Kommission durchgeführt. Es handelt sich dabei um die Vorbereitung von drei Interessensbekundungen.

Interessenbekundungen im 6. EU-Rahmenprogramm

"Technisch-physikalische Werkstoffeigenschaften funktioneller Oberflächen"

"Schweißen von Konstruktionen aus Werkstoffkombinationen – Kennzeichnung thermischer Fügeverfahren für die Herstellung von Konstruktionen aus verschiedenen Materialien"

"Weiterentwicklung des Aufbaus von Werkstoffkombinationen durch Kleben – Auslegungsmethoden und Herstellungstechniken zur Durchsetzung der Anwendung moderner Klebverbindungen in mittelständischen Unternehmen"

Für die Ausarbeitung dieser Interessensbekundungen hat die Forschungsvereinigung jeweils die Leitung von Konsortien aus verschiedenen Forschungsvereinigungen aus unterschiedlichen EU-Ländern sowie von Forschungsinstituten aus diesen EU-Staaten übernommen.

Die geplanten Projekte sind ihrem Ziel und Zweck nach auf die Verwertung und Nutzung ihrer Ergebnisse durch mittelständische Unternehmen in Europa gerichtet. Entsprechend der Intention des 6. Forschungsrahmenprogramms der Europäischen Union sollen die Projektvorschläge im Frühjahr 2003 zur Begutachtung bei der EU-Kommission eingereicht werden. Die Struktur der Interessensbekundungen entspricht dabei den Anforderungen der "Gemeinschaftsforschung" als einem Teilbereich der Fördermaßnahmen der EU.

Bei der "Gemeinschaftsforschung" führen Forschungsdienstleister wie Hochschulen oder Körperschaften im Auftrag von Forschungsvereinigungen, Industrieverbänden oder industriellen Gruppierungen Forschungsarbeiten durch, die zum Ziel haben, die Wissensbasis der mittelständischen Unternehmen zu erweitern und dadurch deren Wettbewerbsfähigkeit zu stärken. Die Forschungsarbeiten sind dabei sowohl transferorientiert als auch auf die Qualifizierung des Personals in den Unternehmen ausgerichtet.

Die Konsortien für diese Projektvorschläge setzen sich aus Teilnehmern aus den EU-Mitgliedstaaten Dänemark, Großbritannien, Frankreich, Niederlande, Finnland, Spanien und Portugal zusammen. Ebenfalls eingebunden sind Projektpartner aus Polen aus dem Bereich der Industrieverbände, der Forschungsdienstleister und der mittelständischen Industrie.

Die Forschungsvereinigung wird die Entwicklung in dem 6. Rahmenprogramm der Europäischen Gemeinschaft kontinuierlich weiter verfolgen, für die Unternehmen und Forschungsinstitute nutzbar machen und konkrete Forschungsanträge initiieren und unterstützen.

Industriefinanzierung der fügetechnischen Gemeinschaftsforschung

In vielen Branchen in der Bundesrepublik Deutschland wird deren industrielle Gemeinschaftsforschung auch durch direkt zu diesem Zweck aufgebrachte Geldleistungen der Industrieunternehmen in Form von Einmalzahlungen und/oder jährlichen Beiträgen finanziert. Beispiele dazu finden sich im Maschinenbau (Antriebstechnik, Verbrennungskraftmaschinen), im Werkzeugmaschinenbau, in der Stahlanwendung, in Unternehmen des Gas- und Wasserfaches, in der Brauereiindustrie, in der Braunkohlenindustrie, in der Holzforschung sowie im Steine-Erden-Bereich. Diese Institutionen verfügen zum Teil über erhebliche Eigenmittel, die von den Mitgliedsunternehmen dieser Branchen zusätzlich zum Mitgliedsbeitrag aufgebracht werden. Berechnungsgrundlage für die Einzahlungen ergeben sich in Abhängigkeit vom Umsatz der Unternehmen oder anderen branchenrelevanten Kenngrößen.

Zur Zukunftssicherung und zum Ausbau der fügetechnischen Gemeinschaftsforschung ist auch vom DVS ein Forschungsfonds eingerichtet worden. Unternehmen haben dabei die Möglichkeiten, sich auf freiwilliger Basis am Aufbau des DVS-Forschungsfonds zu beteiligen.

Beteiligungsmöglichkeiten

durch einmalige/mehrmalige Einzahlungen von Geldbeträgen, die im Fonds verbleiben und zu Erträgen führen

durch regelmäßige Einzahlungen von Geldbeträgen, die nicht im Fonds verbleiben, sondern direkt zur Finanzierung von Forschungsprojekten ver wendet werden.

Nach einer Anlaufphase sollen aus dem Fonds pro Jahr Geldmittel zur Finanzierung von Forschungsprojekten zur Verfügung stehen. Der DVS hat für den Fonds bereits im Jahr 2001 aus seiner freien Rücklage Geldmittel als Fondseinlage gewährt. Erste Einzahlungen von Industrieunternehmen sind erfolgt. Es sollen kontinuierlich weitere Unternehmen für den Aufbau des Fonds gewonnen werden. Im Jahr 2003 soll mit der Finanzierung von ersten Studien über Forschungsansätze in verschiedenen Bereichen der Fügetechnik begonnen werden. Mit der Finanzierung erster Forschungsprojekte soll in den Jahren 2003/2004 begonnen werden. Für die Unternehmen, die sich finanziell am DVS-Forschungsfonds beteiligen, ergeben sich bevorzugte Gestaltungsmöglichkeiten bei den Forschungsprojekten, besonders bei der Prioritätensetzung und bei der Forschungsplanung. Finanzierte Forschungsprojekte können durch diese Unternehmen direkt begleitet werden. Sie haben einen bevorzugten Zugriff auf die erarbeiteten Forschungsergebnisse.

Ziel des **DVS-Forschungsfonds** ist es, Unternehmen der Wirtschaft die Möglichkeit zur eigenfinanzierten fügetechnischen **Gemeinschaftsforschung** zu eröffnen.

Der Fonds wendet sich an solche Unternehmen, die Interesse an der Forschung auf dem Gebiet des Fügens, Trennens und Beschichtens haben. Dies werden Firmen sein, die entweder Produkte zum Fügen, Trennen und Beschichten herstellen oder die genannten Technologien zur Herstellung ihrer Produkte einsetzen.

Aus den Mitteln des Fonds soll eine schnelle und unbürokratische Finanzierung von anwendungsorientierten Forschungsprojekten mit möglichst direkt umsetzbaren Ergebnissen für die am Fonds beteiligten Unternehmen realisiert werden.

Mittel aus dem Forschungsfonds können auch dazu eingesetzt werden, notwendige Eigenanteile bei öffentlich geförderten Forschungsvorhaben aufzubringen.

Es können sowohl größere eigenständige Forschungsprojekte als auch kleinere Forschungsprojekte, die zur Vorlauf- oder Nachlaufforschung jeweils größerer (auch öffentlich geförderter) Forschungsvorhaben dienen, finanziert werden.

Grundsätzlich sind alle Gebiete der Gemeinschaftsforschung auf den Gebieten des Fügens, Trennens und Beschichtens geeignet, aus dem DVS-Forschungsfonds gefördert zu werden. Prioritäten werden durch ein **Kuratorium** gesetzt.

DOKUMENTATION Mitglieder der Forschungsvereinigung

Übersicht 1 Unternehmen

Übersicht 2 Körperschaften

Übersicht 3 Forschungsinstitute und Institutsleiter

Übersicht 1

Unternehmen

3M Laboratories (Europe), Neuss • AB Anlagenplanung, Achim • ABB Calor Emag, Ratingen • Adam Opel AG. Rüsselsheim • AEG - SVS - Schweisstechnik GmbH, Mülheim • Agfa NDT GmbH, Hürth • Air Liquide GmbH, Böhlen, Düsseldorf • Air Products GmbH, Hattingen • Airbus Deutschland GmbH, Bremen • Aker MTW Werft GmbH, Wismar • Alcan Technology & Management AG, Neuhausen (CH) • Alexander Binzel Schweisstechnik GmbH & Co KG, Gießen • ALSTOM LHB GmbH, Salzgitter • Alstom Power (Switzerland) Ltd, Baden (CH) • Aluminium Technologie Service, Meckenheim • AMI DODUCO GmbH, Pforzheim • ARO Schweißmaschinen GmbH, Augsburg • ATOFINA Chemicals. Wetmore (USA) • Audi AG. Ingolstadt/Neckarsulm • Bänninger Kunststoff-Produkte GmbH. Reiskirchen • Basell Deutschland GmbH, Frankfurt • BASF AG, Ludwigshafen • Bayer AG, Dormagen, Leverkusen • Bayerische Motorenwerke AG (BMW), München/Dingolfing • Behr GmbH & Co., Stuttgart • Benteler Automobiltechnik GmbH, Paderborn • Bergrohr GmbH. Siegen • Berkenhoff GmbH. Heuchelheim • bielomatik Leuze GmbH + Co., Neuffen BLAUPUNKT GmbH, Hildesheim
 Bodycote Vacuum Brazing Metal Technology GmbH, Sprockhövel
 Bombardier Transportation, Netphen/Henniqsdorf • Branson Ultraschall, Dietzenbach • Braze Tec GmbH, Hanau-Wolfgang • Carl Lixfeld GmbH & Co. KG, Siegen • Castolin GmbH, Kriftel • CHEMET GmbH, Wirges • CiF GmbH, Grünstadt • Cloos Innovations-GmbH, Herborn • Coatec Gesellschaft für Oberflächenveredelung GmbH & Co KG, Düsseldorf • Coating Center Castrop GmbH, Castrop-Rauxel • Corus Aluminium Profiltechnik Bonn GmbH, Bonn • Corus Aluminium Walzprodukte GmbH, Koblenz • DaimlerChrysler AG, Bremen, Frankfurt am Main, Sindelfingen, Stuttgart, Ulm • Degussa AG, Marl • Degussa Infracor GmbH, Marl • Deloro Stellite GmbH, Koblenz • Deutsche Bahn AG, Minden • DINSE GmbH, Hamburg • Dortmunder Oberflächen Centrum, Dortmund • Drahtwerk Elisental W. Erdmann GmbH & Co., Neuenrade • DRAHTZUG STEIN, Altleiningen • DURUM-Verschleiss-Schutz GmbH, Willich • EADS Deutschland GmbH, München • Eisenbau Krämer mbH, Hilchenbach • EJOT Verbindungstechnik GmbH & Co KG, Obermichelbach-Rothenberg • ELF ATOCHEM ATO, Serguigny (F) • Endress+Hauser GmbH+Co., Teltow • ERSA GmbH, Wertheim • Essener Hochdruck-Rohrleitungsbau GmbH, Essen • Euroflamm GmbH, Horb am Neckar • Euromat GmbH, Heinsberg • Eutect Selective Löttechnik, Dusslingen • EWM Hightec Welding GmbH, Mündersbach • Feinmechanische Werke Halle GmbH, Halle • Festo AG & Co., Esslingen • Fontargen GmbH, Eisenberg • Ford Forschungszentrum Aachen GmbH, Aachen • Ford-Werke AG, Köln • Frank GmbH, Mörfelden • Friatec AG, Mannheim ● Fronius International GmbH, Wels-Thalheim (A) ● GEA Tuchenhagen GmbH, Büchen ● GEA Westfalia Separator Industrie GmbH, Oelde • Georg Fischer Rohrleistungssysteme AG, Schaffhausen (CH) • Gesellschaft für Neue Technologie mbH, Goslar ● Gesellschaft für Wolfram Industrie mbH, Traunstein ● Gotek GmbH, Frankfurt ● Grillo-Werke AG, Duisburg • GSI LUMONICS GmbH, Unterschleißheim • GTIM Industrie, La Chevroliere (F) • GTV-Gesellschaft für Thermischen Verschleiß-Schutz mbH, Betzdorf ● H. A. Schlatter AG, Schlieren (CH)● H.C. Starck GmbH, Laufenburg • Harms & Wende Schweißtechnik GmbH & Co. KG, Hamburg • Henkel KgaA, Düsseldorf • Henkel Teroson GmbH, Heidelberg • Henze Kunststoffwerk GmbH, Troisdorf • HESSEL Ingenieurtechnik GmbH, Roetgen • Howaldtswerke - Deutsche Werft AG, Kiel • HT-Troplast AG, Troisdorf • Hydro Aluminium Deutschland GmbH, Bonn • IBL Löttechnik GmbH, Königsbrunn • Ingenieurbüro Platz, Haiger • Isot GmbH, Witten • Josch Strahlschweißtechnik GmbH, Teicha • Jurca Optoelektronik GmbH & Co. KG, Rodgau (Ddh) • Klaus Raiser GmbH, Eberdingen • Krupp Drauz GmbH, Heilbronn • KUKA Schweissanlagen GmbH, Augsburg • Künstler Bahntechnik GmbH, Holzwickede • Kvaerner Warnow Werft GmbH, Rostock • LASAG AG, Thun (CH) • Linde AG, Hamburg, Unterschleißheim • Lorch Schweißtechnik GmbH, Auenwald • Lorenz GmbH & Co. Behälter- und Apparatebau KG, Landshut • Mannesmannröhren Service GmbH, Duisburg • Matuschek Messtechnik GmbH, Alsdorf • megatronic Schweißmaschinenbau GmbH, Neusäß (CH) • Merkle-Schweißanlagen-Technik GmbH, Kötz • Messer Griesheim GmbH, Krefeld • microTEC Gesellschaft für Mikrotechnologie mbH, Bad Dürkheim • Miele & Cie. GmbH & Co., Gütersloh • MIG WELD GmbH Deutschland, Landau a.d. Isar • Minimax GmbH, Bad Oldesloe • MTU Aero Engines

Unternehmen

GmbH, München • My Optical Systems GmbH, Kahl am Main • Neue Materialien Bayreuth GmbH, Bayreuth • NU-TECH GmbH, Neumünster ● OBZ DRESEL und GRASME GmbH, Bad Krozingen ● Oerlikon Schweißtechnik GmbH, Eisenberg • OMG AG & Co. KG, Hanau • OSU Maschinenbau GmbH, Duisburg • Otto Fuchs Metallwerke, Meinerzhagen • Pallas GmbH & Co. KG, Würselen • Panacol-Elsol GmbH, Oberursel • PLASTICON GERMANY GmbH, Dinslaken • PM Engineering Ingenieurbüro für Kunststofftechnik und Industrieanlagen, Leimen • PRIMES GmbH, Pfungstadt • pro-beam AG & Co. KgaA, Planegg • PTR Präzisionstechnik GmbH, Maintal • PVA Löt- und Werkstofftechnik GmbH, Asslar • Rampf Formen GmbH, Allmendingen • Reiser Metallbau GmbH, Neumünster • Robert Bosch GmbH, Stuttgart, Salzgitter, Waiblingen • RWE Rheinbraun Aktiengesellschaft, Frechen • SAF Schweißautomatik GmbH, Mönchengladbach • SAINT-GOBAIN Ceramic Materials GmbH, Weilerswist • Salzgitter AG, Salzgitter • Salzgitter Flachstahl GmbH, Salzgitter • SAXOBRAZE GmbH, Chemnitz • SCHOTT JENAer GLAS GmbH, Jena Schunk Ultraschalltechnik GmbH, Wettenberg
 SEV-Steuerungstechnik GmbH, Espelkamp
 Sico Jena GmbH, Jena • Siebe Engineering GmbH, Neustadt/Wied • Siemens AG, München/Berlin • Siemens AG Transportation Systems, Krefeld • Siemens Power Generation AG, Mülheim/Ruhr • Sika Schweiz AG, Zürich (CH) • Simona AG, Kirn SKT-Kunststoffschweißtechnik, Limburg
 SMS-DEMAG AG, Hilchenbach
 Solvay Polyolefins Europe GmbH, Rheinberg • Soudronic Neftenbach AG, Neftenbach (CH) • Soudronic GmbH, Wiesbaden • Stannol GmbH, Wuppertal • Sulzer Markets and Technology AG, Winterthur (CH) • Sulzer Metco GmbH, Hattersheim, New York (USA), Salzgitter, • TBI-Industries GmbH & Co. KG, Fernwald-Steinbach • TELSONIC AG, Bronschhofen (CH) • Terolab Services Germany GmbH, Langenfeld • Thyssen Krupp Stahl AG, Dortmund, Duisburg • Thyssen Krupp VDM, Altena Thyssen Schweißtechnik Deutschland GmbH, Hamm
 Trumpf Werzeugmaschinen GmbH & Co KG, Hemer, Ditzingen • Uhde GmbH, Dortmund • Unitek EAPRO GmbH, Puchheim • Vantico AG, Basel (CH) • Vautid Verschleiß-Technik, Ostfildern ◆ VAW aluminium AG, Bonn ◆ Voith Paper Service GmbH & Co KG, Laakirchen/Oberweis (CH) • Volkswagen AG, Wolfsburg • W. C. Heraeus GmbH & Co KG, Hanau • Wagon Automotive GmbH, Waldaschaff Wegener GmbH, Aachen
 Weld Consult GmbH, Essen
 Westfalen AG, Münster/Wenigerode
 Witzenmann GmbH, Pforzheim • Wolf & Partner GmbH, Berlin • ZEUNA Stärker GmbH & Co KG, Augsburg • ZEVAC GmbH, Oberpframmern

Übersicht 2

Körperschaften

Fachhochschule Düsseldorf

Fachhochschule Gelsenkirchen

Fachhochschule Wilhelmshaven

Institut für Werkstofftechnik, Technische Universität Ilmenau

Forschungszentrum Jülich GmbH

GKSS Forschungszentrum, Institut für Werkstofforschung, Geesthacht

Institut für Werkstoffkunde und Schweißtechnik, Fachhochschule Hamburg

Kunststoffzentrum in Leipzig Gemeinnützige Gesellschaft mbH

Schweißtechnische Lehr- und Versuchsanstalt Nord Hamburg

Schweißtechnische Lehr- und Versuchsanstalt Mannheim GmbH

Technische Universität Hamburg Schiffstechnische Konstruktionen und Berechnungen

VDI/VDE Technologiezentrum, Teltow

Verein Deutscher Eisenhüttenleute, Düsseldorf

Übersicht 3

Forschungsinstitute und Institutsleiter

Institut Institutsleiter

Aachen

Rheinisch Westfälische Technische Hochschule Aachen

Institut für Eisenhüttenkunde

Rheinisch Westfälische Technische Hochschule Aachen Institut für Schweißtechnische Fertigungsverfahren

Rheinisch WestfälischeTechnische Hochschule Aachen Lehr- und Forschungsgebiet Klebtechnik

Rheinisch Westfälische Technische Hochschule Aachen Lehr- und Forschungsgebiet Werkstoffwissenschaften

Institut für Kunststoffverarbeitung in Industrie und Handwerk an der Rheinisch Westfälischen Technischen

Hochschule Aachen

Fraunhofer Institut für Lasertechnik

Berlin

Bundesanstalt für Materialforschung und -prüfung

Schweißtechnische Lehr- und Versuchsanstalt

Berlin-Brandenburg, Niederlassung der GSI mbH

Fraunhofer Institut für Zuverlässigkeit und Mikrointegration

Braunschweig

Technische Universität Braunschweig

Institut für Konstruktionslehre, Maschinen- und Feinwerkelemente

Technische Universität Braunschweig

Institut für Füge- und Schweißtechnik

Bremen

Fraunhofer Institut für

Fertigungstechnik und Materialforschung

Bremer Institut für angewandte Strahltechnik

Chemnitz

Technische Universität Chemnitz

Institut für Fertigungstechnik/Schweißtechnik

Technische Universität Chemnitz

Lehrstuhl für Verbundwerkstoffe

Prof. Dr.-Ing. W. Bleck

Prof. Dr.-Ing. U. Dilthey

bis 31.10.2002

Prof. Dr.-Ing. K. Dilger

Prof. Dr.techn. E. Lugscheider

Prof. Dr.-Ing. W. Michaeli

Prof. Dr.-Ing. R. Poprawe

Prof. Dr.-Ing. Th. Böllinghaus

bis 30.11.2002

Dr.-Ing. G. Kalla

ab 01.12.2002

Dr.-Ing. D. Paulinus

Prof. Dr.-Ing. H. Reichl

Prof. Dr.-Ing. H.-J. Franke

bis 31.10.2002

Prof. Dr.-Ing. H. Wohlfahrt

ab 01.11.2002

Prof. Dr.-Ing. K. Dilger

Prof. Dr.rer.nat. O.-D. Hennemann

bis 31.10.2002 Prof. Dr.-Ing. G. Sepold

ab 01.11.2002 Prof. Dr.-Ing.W. Jüptner

Prof. Dr.-Ing.habil. K.-J. Matthes

Prof. Dr.-Ing. B. Wielage

Institut Institutsleiter

Clausthal-Zellerfeld

Technische Universität Clausthal

Institut für Schweißtechnik und Trennende Fertigungsverfahren

bis 30.09.2002 Prof. Dr.-Ing. U. Draugelates

ab 01.10.2002

Prof. Dr.-Ing. V. Wesling

Technische Universität Clausthal

Institut für Maschinelle Anlagentechnik und Betriebsfestigkeit

Prof. Dr.-Ing. H. Zenner

Darmstadt

Fraunhofer Institut für Betriebsfestigkeit Prof. Dr.-Ing. H. Hanselka

Technische Universität Darmstadt Staatliche Materialprüfungsanstalt

Institut für Werkstoffkunde Prof. Dr.-Ing. Ch. Berger

Dortmund

Universität Dortmund

Lehrstuhl für Qualitätswesen Prof. Dr.-Ing. H.-A. Crostack

Universität Dortmund

Lehrstuhl für Werkstofftechnologie bis 31.10.2002

Prof. Dr.-Ing. Fr.-W. Bach

ab 01.11.2002

Prof. Dr.-Ing. Dipl.-Wirt. Ing. W. Tillmann

Dresden

Technische Universität Dresden

Institut für Halbleiter- und Mikrosystemtechnik Prof. Dr.-Ing. habil. E. Meusel

Technische Universität Dresden

Institut für Produktionstechnik/Fügetechnik Prof. Dr.-Ing.habil. U. Füssel

IMA Materialforschung und Anwendungstechnik GmbH Dr.-Ing. W. Hanel Fraunhofer Institut für Werkstoff- und Strahltechnik Prof. Dr. E. Beyer

Neuaufnahme ab 16.05.2002

Duisburg

Schweißtechnische Lehr- und Versuchsanstalt

SLV Duisburg Niederlassung der GSI mbH Prof. Dr.-Ing. H. Thier

Universität Duisburg-Essen

Institut für Produkt Engineering Werkstofftechnik II Prof. Dr.-Ing. A. Fischer

Erlangen

Friedrich-Alexander-Universität Erlangen-Nürnberg

Lehrstuhl für Kunststofftechnik

Demonstrationszentrum für Faserverbundwerkstoffe Prof. Dr.-Ing. G. W. Ehrenstein

Friedrich-Alexander-Universität Erlangen-Nürnberg

Institut für Fertigungstechnik

Lehrstuhl für Fertigungstechnologie Prof. Dr.-Ing. Dr.h.c. M. Geiger

Institut Institutsleiter

Fellbach

Schweißtechnische Lehr- und Versuchsanstalt Fellbach

Niederlassung der GSI mbH Dipl.-Ing. SFI H. Roth

Freiburg

Fraunhofer Institut für Werkstoffmechanik Prof. Dr.-Ing. P. Gumbsch

Universität Freiburg

Institut für Mikrosystemtechnik

Aufbau- und Verbindungstechnik Prof. Dr.-Ing. J. Wilde

Garching

Technische Universität München

Lehrstuhl für Werkstoffkunde und Werkstoffmechanik bis 31.03.2002

Prof. Dr.-Ing. J.K. Gregory

ab 01.04.2002

Prof. Dr. mont. habil. E. Werner

Technische Universität München Prof. Dr.-Ing. M. Zäh

Institut für Werkzeugmaschinen und Betriebswissenschaften Neuaufnahme ab 16.05.2002

Halle

Schweißtechnische Lehr- und Versuchsanstalt Halle GmbH Dr.-Ing. S. Keitel

Hamburg

Universität der Bundeswehr Hamburg

Institut für Werkstofftechnik Prof. Dr.rer.nat. H. Kreye

Hannover

Universität Hannover

Institut für Werkstoffkunde Prof. Dr.-Ing. Fr.-W. Bach

Universität Hannover

Fachgebiet Fügen durch Stoffverbinden, Schweißtechnik Prof. Dr.-Ing.habil. D. Rehfeldt Laserzentrum Hannover e.V. Prof. Dr.-Ing. E. H. Haferkamp

Schweißtechnische Lehr- und Versuchsanstalt Hannover Dr.-lng. H. Köstermann

Ilmenau

Technische Universität Ilmenau

Fachgebiet Plasma- und Oberflächentechnik Prof. Dr. habil. G. Nutsch

Technische Universität Ilmenau

Fachgebiet Fertigungstechnik Prof. Dr.-Ing.habil. J. Wilden

Itzehoe

Fraunhofer Institut für Siliziumtechnologie Prof. Dr.rer.nat. A. Heuberger

Jena

Institut für Fügetechnik und Werkstoffprüfung GmbH Prof. Dr.-Ing.habil. G. Köhler

Kaiserslautern

Universität Kaiserslautern Lehrstuhl für Werkstoffkunde

Prof. Dr.-Ing. D. Eifler

Institut Institutsleiter

Kassel

Universität Kassel

Institut für Werkstofftechnik

Verbundwerkstoffe/Werkstoffkunde Prof. Dr.-Ing. M. Schlimmer

Magdeburg

Otto-von-Guericke Universität Magdeburg

Institut für Füge- und Strahltechnik Prof. Dr.-Ing.habil. H. Herold

Otto-von-Guericke Universität Magdeburg

Institut für Elektrische Energiesysteme Prof. Dr.-Ing.habil. H. Mecke

München

Schweißtechnische Lehr- und Versuchsanstalt

SLV München Niederlassung der GSI mbH Prof. Dr.-Ing. D. Böhme

Technische Universität München Prof. Dr.Ing. D. Kosteas

Institut für Tragwerksbau Wiederaufnahme ab 01.10.2002

Neubiberg

Universität der Bundeswehr München

Fakultät für Elektrotechnik Prof. Dr.-Ing. K. Landes

Paderborn

Universität Paderborn

Laboratorium für Werkstoff- und Fügetechnik Prof. Dr.-lng. O. Hahn

Universität Paderborn

Kunststofftechnologie Prof. Dr.-Ing. H. Potente

Rostock

Schweißtechnische Lehr- und Versuchsanstalt

Mecklenburg-Vorpommern GmbH Prof. Dr.-Ing.habil. P. Seyffarth

Saarbrücken

Schweißtechnische Lehr- und Versuchsanstalt im Saarland

Niederlassung der GSI mbH Dipl.-Ing. H. Geiss

Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren Prof. Dr.-Ing. M. Kröning

Siegen

Universität Siegen

Institut für Fertigungstechnik Prof. Dr.-Ing. habil. B.-U. Zehner

Schmalkalden

Gesellschaft für Fertigungstechnik und Entwicklung e.V. Dr.-Ing. K. Holland-Letz

Stuttgart

Universität Stuttgart

Staatliche Materialprüfungsanstalt Prof. Dr.-Ing. habil. E. Roos

DOKUMENTATION

Fügetechnische Gemeinschaftsforschung 2002 Vorhaben, Ergebnisse, Planung

Übersicht	4	Neu begonnene Vorhaben
Übersicht	5	Beteiligung der Forschungsinstitute an den neu begonnenen Vorhaben
Übersicht	6	Fortgeführte Vorhaben
Übersicht	7	Beteiligung der Forschungsinstitute an den fortgeführten Vorhaben
Übersicht	8	Abgeschlossene Vorhaben mit Vorlage der Schlussberichte 2002
Übersicht	9	Beteiligung der Forschungsinstitute an den abgeschlos- senen Vorhaben mit Vorlage der Schlussberichte 2002
Übersicht	10	Abgeschlossene Vorhaben mit Vorlage der Schlussberichte 2003
Übersicht	11	Beteiligung der Forschungsinstitute an den abgeschlos- senen Vorhaben mit Vorlage der Schlussberichte 2003
Übersicht	12	Veröffentlichung von Vorhaben in der Fachzeitschrift "Schweissen & Schneiden"
Übersicht	13	Veröffentlichung von Vorhaben in der Fachzeitschrift "der praktiker"
Übersicht	14	Veröffentlichung von Vorhaben in der Fachzeitschrift "VTE – Verbindungstechnik in der Elektronik"
Übersicht	15	Eingereichte Anträge bei der AiF
Übersicht	16	Beteiligung der Forschungsinstitute an den eingereichten AiF-Anträgen
Übersicht	17	Entscheidung über Kurzanträge in den Fachausschüssen
Übersicht	18	Beteiligung der Forschungsinstitute an den Kurzanträgen

Übersicht 4

Neu begonnene Vorhaben

DVS-Nr.	AiF-Nr.	Titel/Institutsleiter
1.037	13.137 N	Verbesserung der mechanischen Eigenschaften von Schweißverbindungen an Titanwerkstoffen BACH/HAFERKAMP
1.038	13.136 B	Metallurgische Untersuchungen zur Entwicklung von Cu- und Ni-Basiszusatzwerkstoffen für den Plasma-Pulver-Lötprozess WESLING/HEROLD
1.039	13.139 B	Untersuchungen zur schweißtechnischen Verarbeitung von Silizium-basierten Hartstoffen zur Erhöhung der Verschleißbeständigkeit HOLLAND-LETZ/WESLING
2.034	13.413 N	Erschliessung neuer Einsatzmöglichkeiten für Spritzschichten durch Mikroplasmaspritzen LUGSCHEIDER
3.054	13.141 B	Untersuchungen zum MSG-Flachdraht-Schweißen von Aluminiumwerkstoffen WESLING/KEITEL
3.055	13.143 N	Mechanisiertes WIG-Schweißen von Magnesiumlegierungen DILGER
3.057	13.408 B	Untersuchungen zum MSG-Auftragschweißen mit Flachdrahtelektroden BÖHME/KEITEL
4.030	13.142 B	Untersuchungen zur schweißtechnischen Verarbeitung von Al-Sandwich-Verbunden KEITEL
4.031	13.134 N	Standmengenerhöhung beim Widerstandspunktschweißen durch Elektrodenfräsen BÖHME/ROOS
4.032	13.284 B	Verringerung der elektromagnetischen Störemissionen von Widerstandsschweiß- maschinen durch leistungsteilinterne Maßnahmen MECKE/THIER
5.024	13.331 B	Fügen optischer Komponenten für Hochleistungsoptiken, für die Vakuumtechnik und für Laseranwendungen KÖHLER
5.026	13.250 N	Erprobung der Durchschweißtechnik beim Lichtbogenbolzenschweißen mit Hubzündung an unterschiedlich beschichteten Stahlblechen BÖHME
5.027	13.285 N	Untersuchungen zur Vermeidung bzw. Reduzierung des Anhaftens von Aluminium und Aluminiumlegierungen an Sonotroden beim Ultraschallschweißen EIFLER
5.028	13.362 N	Bolzenschweißen an beschichteten Blechen im Vergleich BÖHME
6.044	13.283 B	Qualifizierung von Elektronenstrahlverfahren zur Verbesserung der Verschleiß- und Korrosionsbeständigkeit von Leichtmetallwerkstoffen

WESLING/WIELAGE

Neu begonnene Vorhaben

DVS-Nr.	AiF-Nr.	Titel
6.048	13.514 B	Untersuchungen zum Laserstrahlbohren von Schmierlöchern in metallischen Kom ponenten und Modulen für die Kraftfahrzeugbauindustrie HEROLD
7.038	13.360 N	Flußmittelfreies Flammlöten von Aluminiumlegierungen durch Ultraschall- unterstützung BACH
8.029	13.249 N	Qualifizierung der ultraschallangeregten Thermografie für die Klebtechnik DILGER
8.030	13.336 N	Praxisgerechte Untersuchung von Emissionen bei der Verarbeitung und der Verwendung von Polyurethan-Klebstoffen HENNEMANN
9.033	13.140 B	Erweiterung der Anwendbarkeit des Strukturspannungskonzeptes für die Bewertung der Schwingfestigkeit von geschweißten Al-Bauteilen mit unterschiedlicher Lage von berechneter Spannung und kritischem Anrissort DILGER/KEITEL
10.025	13.138 B	Untersuchungen zur Unterfüllung von Bauteilen mit flächig verteilten Lötanschlüssen in der Oberflächenmontagetechnik HEUBERGER/HENNEMANN/MEUSEL
10.029	13.133 N	Charakterisierung des Wärmeübergangs durch dünne Klebschichten HAHN/HENNEMANN
10.031	13.361 N	Stressarme Montage von Sensoren und Mikrooptik-Komponenten mittels Mikroklebtechniken HEUBERGER/HENNEMANN
10.032	13.309 B	Thermosonic-Drahtbonden bei Verfahrenstemperaturen unter 100°C GUMBSCH/MEUSEL/REICHL
10.033	13.310 B	Herstellung und Untersuchung von eutektischen SnAg- und SnAgCu-Lotbumps auf modifizierten Unterbumpmetalliserungen MEUSEL/REICHL
10.01-1 IP	75 ZBG	Simultane Herstellung von Microvias durch kombinierte Mikro-Umform- und Fügetechnik REICHL/MEUSEL

Beteiligungen der Forschungsinstitute an den neu begonnenen Vorhaben

Gesamtzahl: 26 / 21 Forschungsinstitute beteiligt

Beteiligung von Forschungsinstituten: 43

(Forschungsinstitute durch den Namen des Institutsleiters gekennzeichnet)

4 DVS-Institute	10 Beteiligungen	
вёнме	4	
KEITEL	4	
KÖHLER	1	
THIER	1	

11 Hochschul-Institute: 21 Beteiligungen

WESLING	4
MEUSEL	4
DILGER	3
BACH	2
HEROLD	2
EIFLER	1
HAHN	1
LUGSCHEIDER	1
MECKE	1
ROOS	1
WIELAGE	1

6 Sonstige Institute: 12 Beteiligungen

HENNEMANN	4
REICHL	3
HEUBERGER	2
GUMBSCH	1
HAFERKAMP	1
HOLLAND-LETZ	1

Fortgeführte Vorhaben

DVS-Nr.	AiF-Nr.	Titel
1.029	12.934 B	Erarbeiten werkstoffkundlicher Kennwerte geschweißter Aluminiumbauteile in Abhängigkeit von der Wärmeeinbringung BÖHME/SEYFFARTH Beginn: 01.07.2001; Laufzeitende: 30.06.2003
1.032	12.772 N	Metallurgische und korrosionschemische Untersuchungen zur Herstellung von Plasma-Pulver-Nachplattierungen aus Ni-Basislegierungen DRAUGELATES (WESLING) Beginn: 01.03.2001; Laufzeitende: 28.02.2003
1.033	12.754 B	Entwicklung vanadinkarbidhaltiger Schweißzusatzwerkstoffe auf Nickelbasiszum Schutz gegen Verschleiß und Korrosion HOLLAND-LETZ/DRAUGELATES (WESLING) Beginn: 01.11.2000; Laufzeitende: 30.10.2002; Verl. 30.06.2003
1.034	12.674 N	Untersuchungen zum Schweißen in kaltgeformten Bereichen von Feinkornbaustählen mit Streckgrenzen über 355 Nmm ⁻² WOHLFAHRT (DILGER) Beginn: 01.03.2001; Laufzeitende: 28.02.2003
1.041	13.096 N	Hochverschleißfeste und korrosionsbeständige Auftragschweißle-gierungen auf Cr-Mischkristallbasis DILTHEY Beginn: 01.11.2001; Laufzeitende: 31.10.2003
2.028	12.641 B	Plasmaspritztechnische Herstellung von hochwertigen Permanentmagnetschichten für die Mikrosystemtechnik NUTSCH Beginn: 01.12.2000; Laufzeitende: 30.11.2002; Verl. bis 31.03.2003
2.029	12.671 N	Herstellung von besonders oxidarmen metallischen Schichten durch Kaltgasspritzen KREYE Beginn: 01.03.2001; Laufzeitende: 31.10.2002; Verl. bis 31.03.2003
2.030	12.756 N	Thermisches Spritzen von Metallen mit submikro- bis nanokristallinen Dispersionen LUGSCHEIDER Beginn: 01.03.2001; Laufzeitende: 28.02.2003
2.031	12.771 B	Entwicklung eines auf Wärmedurchgang optimierten Verbundsystemes für tribologisch hoch beanspruchte Bauteile WIELAGE Beginn: 01.03.2001; Laufzeitende: 28.02.2003
3.048	12.757 N	MSG-Zweidrahtlöten von hochfesten beschichteten und unbeschichteten Stahlblechen DILTHEY Beginn: 01.03.2001; Laufzeitende: 28.02.2003
3.050	12.753 N	Lichtbogenschweißen von zylindrischen Hohlkörpern (Buchsen, Muttern etc.) mit magnetisch bewegtem Lichtbogen an Aluminiumwerkstoffen BÖHME Beginn: 01.03.2001; Laufzeitende: 28.02.2003

Fortgeführte Vorhaben

DVS-Nr.	AiF-Nr.	Titel
3.052	12.751 B	Untersuchung zur Qualifizierung des Plasma-Pulver-Schweißens von Aluminium für den industriellen Einsatz DRAUGELATES (WESLING)/HOLLAND-LETZ Beginn: 01.03.2001; Laufzeitende: 28.02.2003
3.053	13.004 B	MAG-Tandemschweißen mit Fülldrähten von hochlegierten CrNi-Stählen MATTHES Beginn: 01.08.2001; Laufzeitende: 31.07.2003
4.027	12.935 N	Widerstandsschweißen von höher kohlenstoffhaltigen Stählen mit sehr kurzer Wärmeeinbringung BÖHME Beginn: 01.07.2001; Laufzeitende: 30.06.2003
5.022	12.937 N	Entwicklung eines Qualitätssicherungs(QS)-Systems für das Ultraschallschweißen auf Basis neuronaler Netze unter Nutzung der von der Maschine zur Verfügung gestellten Meßwerte ROOS Beginn: 01.07.2001; Laufzeitende: 30.06.2003
5.025	12.936 N	Reibschweißen mit zusätzlicher Wärmequelle BÖHME Beginn: 01.07.2001; Laufzeitende: 30.06.2003
6.034	12.752 N	Nahtgestaltung und Werkstoffreaktionen beim Elektronenstrahlschweißen von Aluminium-Werkstoffen an Atmosphäre DRAUGELATES (WESLING)/DILTHEY Beginn: 01.03.2001; Laufzeitende: 28.02.2003
6.039	12.649 N	Entwicklung flexibel arbeitender Laseroptiken für mittelständische Schweißbetriebe und Laser-Job-Shops zum Fügen verschmutzter Teile SEPOLD (JÜPTNER)/DILTHEY Beginn: 01.10.2000; Laufzeitende: 31.09.2002; Verl. bis 31.03.2003
7.034	12.843 N	Werkstoffauswahl und Prozessgestaltung zur Herstellung porenarmer Weichlötverbindungen REICHL/HEUBERGER/GREGORY (WERNER) Beginn: 01.04.2001; Laufzeitende: 31.03.2003
7.039	13.097 B	Entwicklung neuer Lote für das Hochtemperaturlöten mechanisch hochbeanspruchter Stahlkomponenten LUGSCHEIDER/WIELAGE Beginn: 01.11.2001; Laufzeitende: 31.10.2003
7.0 I P	48 ZN	Verarbeitbarkeit und Zuverlässigkeit der bleifreien Lote SnAg3,9Cu0,6 und SnCu0,7 für das Reflow- und Wellenlöten REICHL/HEUBERGER/GREGORY (WERNER) Beginn: 01.05.2001; Laufzeitende: 30.04.2003

Fortgeführte Vorhaben

DVS-Nr.	AiF-Nr.	Titel
7.1 l P	49 ZBG	Oberflächentechnik für die Verarbeitung bleifreier Lote in Lötmaschinen WIELAGE/LUGSCHEIDER/BACH Beginn: 01.05.2001; Laufzeitende: 30.04.2003
8.022	12.844 N	Zerstörungsfreie US-Detektion von Klebverbindungsfehlern und deren Auswirkungen auf die mechanischen Beanspruchungen und Beanspruchbarkeit der Verbindung KRÖNING/SCHLIMMER Beginn: 01.04.2001; Laufzeitende: 31.03.2003
8.025	12.677 N	Untersuchungen zum Langzeitverhalten von Klebverbindungen unter hygrothermischen Bedingungen und Berücksichtigung der Zeitraffung SCHLIMMER Beginn: 01.11.2000; Laufzeitende: 31.10.2002; Verl. 31.10.2003
9.026	12.536 N	Ermittlung von Grundlagen für die praktische Anwendung örtlicher Konzepte zur Schwingfestigkeitsbewertung geschweißter Aluminiumbauteile WOHLFAHRT (DILGER)/SONSINO Beginn: 01.07.2000; Laufzeitende: 30.06.2002; Verl. 30.06.2003
9.029	12.755 N	Untersuchungen zum Einfluß einer Temperaturbelastung auf das Verhalten von Strukturklebungen in Mischbauweise HAHN Beginn: 01.03.2001; Laufzeitende: 28.02.2003
9.031	12.676 N	Mittelspannungseinfluß auf das Schwingfestigkeitsverhalten geschweißter Al-Legierungen WOHLFAHRT (DILGER) Beginn: 01.11.2000; Laufzeitende: 31.10.2002; Verl. 31.10.2003

Beteiligungen der Forschungsinstitute an den fortgeführten Vorhaben

Gesamtzahl: 27 / 21 Forschungsinstitute beteiligt

Beteiligung von Forschungsinstituten: 41

(Forschungsinstitute durch den Namen des Institutsleiters gekennzeichnet)

2 DVS-Institute	5 Beteiligungen	
вöнме	4	
SEYFFARTH	1	

13 Hochschul-Institute: 27 Beteiligungen

DILTHEY	4
WESLING (DRAUGELATES)	4
DILGER (WOLFAHRT)	3
LUGSCHEIDER	3
WIELAGE	3
SCHLIMMER	2
WERNER (GREGORY)	2
BACH	1
HAHN	1
KREYE	1
MATTHES	1
NUTSCH	1
ROOS	1

6 Sonstige Institute: 9 Beteiligungen

HEUBERGER	2
HOLLAND-LETZ	2
REICHL	2
JÜPTNER (SEPOLD)	1
KRÖNING	1
SONSINO	1

Übersicht 8 Abgeschlossene Vorhaben mit Vorlage der Schlußberichte 2002

_		_
DVS-Nr.	AiF-Nr.	Titel
1.028	12.535 B	Aufdeckung und Nutzung der Wirkungen von Stickstoffbeimengungen im Schutzgas und im Schweißzusatz beim Schweißen heißrißempfindlicher Ni-Basislegierungen HEROLD
1.030	12.489 N	Beanspruchungsgerechter Verschleißschutz für den Aluminium-Formenbau durch Entwicklung und schweißtechnischer Verarbeitung neuer Legierungen LUGSCHEIDER/DILTHEY
1.0 I P	29 ZBG	Untersuchungen zur Steigerung der Verschleißfestigkeit von Magnesiumlegierungen HOLLAND-LETZ/DRAUGELATES (WESLING)
2.025	12.490 N	Beschichtung von Aluminiumschäumen zum Verschleiß- und Korrosionsschutz LUGSCHEIDER
2.026	12.488 N	Substratvorbereitung durch Trockeneisstrahlen und Beschichten durch thermisches Spritzen in einem Arbeitsschritt BACH
3.038	12.239 N	Reproduzierbarkeit beim MIG-Schweißen von Aluminium DILTHEY/REHFELDT/WOHLFAHRT (DILGER)
3.039	12.240 B	Plasma-MIG-Schweißen von Aluminium und seinen Legierungen MATTHES/DRAUGELATES (WESLING)
3.044	12.473 B	Erhöhung der Prozeßstabilität beim MSG-Schweißen von hochlegierten Werkstoffen über die Drahtelektrode HEROLD
3.046	12.487 N	Entwicklung eines Auswerteprinzips für die Schweißkopfführung beim Aluminium-Impulslichtbogen-Schweißen, basierend auf einer Lichtbogensensorik unter Zuhilfenahme eines künstlichen neuronalen Netzes DILTHEY
3.047	12.491 B	Effizientes WIG-Schweißen von Aluminiumlegierungen KEITEL
4.019	12.188 B	Prozesssimulation und Untersuchung zur Entstehung von Flüssigphasen beim Widerstandsbuckelschweißen von Kupferlegierungen HEROLD/ROOS
4.020	12.238 N	Weiterentwicklung eines Qualitätssicherungssystems auf Basis neuronaler Netze für den praxisgerechten Einsatz DILTHEY
4.021	12.147 B	EMVU-relevante Feldemissionen von Widerstandsschweißmaschinen MECKE/THIER
5.017	12.174 B	Klassifizierung und Bewertung metallischer Beschichtungen beim Ultraschallschweißen von Metallkombinationen in der Elektronik HEROLD

Übersicht 8 Abgeschlossene Vorhaben mit Vorlage der Schlußberichte 2002

DVS-Nr.	AiF-Nr.	Titel
5.021	12.495 N	Reib- und Bolzenschweißen von Verbindungselementen mit metallischen Schäumen BACH
6.030	12.148 N	Einfluß der Bauteilgeometrie und der Legierungselemente auf die Schweißeignung von Stählen zum Laserstrahlschweißen BÖHME
6.032	12.578 B	Spannungsrisskorrosion an Stahlschweißnähten bei un- und niedriglegierten Baustählen MATTHES
6.033	12.580 B	Untersuchungen zum Laserstrahlschweißen mit mobilen, handgeführten oder teilmechanisierten Bearbeitungssystemen HAFERKAMP/KEITEL
7.030	12.493 N	Entwicklung des Hartlötens mit partieller Erwärmung zum Fügen dünnwandiger Titanlegierungen BACH
7.031	12.579 B	Einfluß der Korrosionsbeständigkeit von Metall-Keramik-Verbindungen auf deren Langzeitverhalten WIELAGE
7.032	12.492 N	Pulvermetallurgisch hergestellte, niedrigschmelzende Aluminium-Basislote zum Löten von hochlegierten Aluminium-Legierungen LUGSCHEIDER
9.018	11.661 N	Lebensdauer im Bereich hoher Schwingspielzahlen (HCF) ZENNER
9.020	12.189 N	Fitness for Purpose - Bewertung von modernen Schweißverfahren für Al-Strangpreßprofile mit Schweißbadsicherung GUMBSCH/KALLA
9.021	12.183 N	Ermittlung von Dauerschwingfestigkeitskennwerten für die Bemessung von geschweißten Aluminiumbauteilen auf der Grundlage örtlicher Strukturbeanspruchungen WOHLFAHRT (DILGER)
9.028	12.237 N	Steigerung der Schwingfestigkeit geschweißter dünnwandiger Aluminiumbauteile durch Nachbehandlung ZENNER/DRAUGELATES (WESLING)
10.021	12.496 N	Entwicklung eines lösbaren, formschlüssigen Mikrofügeverfahrens auf der Basis lasergestützter Modellierung von PVD-abgeschiedenen Bimetallstrukturen LUGSCHEIDER/POPRAWE
10.024	12.497 B	Bonden mit Cu-Draht in der Leistungselektronik MEUSEL/HEUBERGER

Beteiligungen der Forschungsinstitute an den abgeschlossenen Vorhaben mit Vorlage der Schlußberichte 2002

Gesamtzahl: 27 / 22 Forschungsinstitute beteiligt

Beteiligung von Forschungsinstituten: 39

(Forschungsinstitute durch den Namen des Institutsleiters gekennzeichnet)

A DVS-Institute S Beteiligungen KEITEL BÖHME KALLA THIER 1

13 Hochschul-Institute 29 Beteiligungen

DILTHEY	4
HEROLD	4
LUGSCHEIDER	4
BACH	3
WESLING (DRAUGELATES)	3
DILGER (WOHLFAHRT)	2
MATTHES	2
ZENNER	2
MECKE	1
MEUSEL	1
REHFELD	1
ROOS	1
WIELAGE	1

5 Sonstige Institute 5 Beteiligungen

GUMBSCH	1
HAFERKAMP	1
HEUBERGER	1
HOLLAND-LETZ	1
POPRAWE	1

Abgeschlossene Vorhaben 2002 mit Vorlage der Schlußberichte 2003

DVS-Nr.	AiF-Nr.	Titel/Institutsleiter
1.027	12.622 N	Untersuchungen zur Entwicklung von ausscheidungshärtbaren Schichten aus Nickelbasis-Superlegierungen DRAUGELATES (WESLING)
2.027	12.577 B	Untersuchungen zur Festigkeitsoptimierung hochverschleißbeständiger Schutzschichten HOLLAND-LETZ/DRAUGELATES (WESLING)
2.029	12.671 N	Herstellung von besonders oxidarmen metallischen Schichten durch Kaltgasspritzen KREYE
3.043	12.639 N	Untersuchungen zum Plasma-Löten von verzinkten Feinblechwerkstoffen DRAUGELATES (WESLING)
4.023	12.617 N	Grundlegende Untersuchung zur Kontaktsituation beim Widerstandspunktschweißen ROOS
4.024	12.616 N	Widerstandspunkt- und Buckelschweißen von Magnesiumlegierungen BÖHME
4.025	12.618 N	Untersuchungen zum Widerstandspunktschweißen von Feinblechen aus neuentwickelten höher- und höchstfesten Stahlwerkstoffen THIER/DRAUGELATES (WESLING)
4.026	12.739 N	Einseitiges Widerstandsschweißen von Stahl-Hohlprofilen DILTHEY/BÖHME
5.019	12.494 B	Untersuchung zum ultraschallunterstützten Kaltpreßschweißen für Anwendungen in der Kleinteilfertigung WOHLFAHRT (DILGER)/HEROLD
5.020	12.738 N	Untersuchungen des Einflusses hoher Drehzahlen auf das Schweißergebnis für das Reibschweißen mit niedrigen Prozeßkräften (Reibschweißen mit hohen Drehzahlen) BÖHME
5.023	12.645 B	Einfluss der Legierungselemente, der Struktur, des Gefüges und der Eigenschaften von Federwerkstoffen auf Kupferbasis auf die Ultraschallschweißeignung HEROLD
6.037	12.740 B	Elektronenstrahlschweißen mit Zusatzwerkstoff unter Anwendung der frei programmierbaren Ablenktechnik KEITEL
6.038	12.643 B	Laserstrahldispergieren von Titanwerkstoffen zur Herstellung boridverstärkter hochverschleißfester und korrosionsbeständiger Oberflächen MATTHES/WIELAGE
6.040	12.619 N	Vergleichende Untersuchungen zum Einfluss des Hochleistungsstrahl-schweißens auf die Eigenschaften von Aluminium- und Magnesiumlegierungen DILTHEY/DRAUGELATES (WESLING)

Abgeschlossene Vorhaben 2002 mit Vorlage der Schlußberichte 2003

DVS-Nr.	AiF-Nr.	Titel/Institutsleiter
7.033	12.640 N	Einfluß der Mikrometallurgie auf die Prozeßfähigkeit und Zuverlässigkeit mikrotechnischer Lötverbindungen GREGORY (WERNER)/REICHL/HEUBERGER
7.035	12.675 N	Hartlöten von hartmetallbestückten Bauteilen und Werkzeugen LUGSCHEIDER
7.037	12.644 B	Laserlöten von Silizium /Pyrex mittels Glaslot zur Kapselung von Mikrosensoren HEUBERGER/KÖHLER
8.025	12.677 N	Untersuchungen zum Langzeitverhalten von Klebverbindungen unter hygrothermischen Bedingungen und Berücksichtigung der Zeitraffung SCHLIMMER
8.027	12.672 N	Möglichkeiten und Grenzen des Fügens von Sinterkeramiken und -metallen im Grünlingsstadium POTENTE/HAHN
9.024	12.620 N	Berechnung und Dimensionierung von Klebverbindungen im Schienenfahrzeugbau mit der Methode der Finiten Elemente DILGER/SCHLIMMER
9.027	12.642 N	Einfluß der Nahtvorbereitung und Nahtausführung auf die Schwingfestigkeit hochwertiger Aluminium-Konstruktionen ZENNER
9.031	12.676 N	Mittelspannungseinfluß auf das Schwingfestigkeitsverhalten geschweißter Al-Legierungen WOHLFAHRT (DILGER)
10.022	12.498 N	Reproduzierbares Dispensen elektrisch-leitfähiger Klebstoffe im Sub-Nanoliter-Bereich bei kurzen Taktzeiten HENNEMANN/KRÖNING
10.023	12.621 N	Präzisions-Hartlötverfahren für die MEMS-Technik (<u>m</u> icro <u>e</u> lectro <u>m</u> echanical- <u>s</u> ystems) BACH
8.024	12.627 N	Bestimmung der Laserschweißeignung von Kunststoffen für unterschiedliche Wellenlängen unter Verwendung eines thermografischen Meßverfahrens MICHAELI/HAFERKAMP (jetzt FA 11)
8.026	12.673 N	Systematische Untersuchung der Erwärmbarkeit von technischen Kunststoffen und Füllstoffen im Mikrowellen-Feld in Hinblick auf deren Eignung zum Mikrowellen-Schweißen POTENTE (jetzt FA 11)

Beteiligungen der Forschungsinstitute an den abgeschlossenen Vorhaben 2002 mit Vorlage der Schlußberichte 2003

Gesamtzahl: 26 / 28 Forschungsinstitute beteiligt

Beteiligung von Forschungsinstituten: 42

(Forschungsinstitute durch den Namen des Institutsleiters gekennzeichnet)

6 Beteiligungen
3
1
1
1

18 Hochschul-Institute 29 Beteiligungen

WESLING (DRAUGELATES)	5
DILGER (WOHLFAHRT)	3
DILTHEY	2
HEROLD	2
POTENTE	2
SCHLIMMER	2
ZENNER	2
BACH	1
HAHN	1
KREYE	1
LUGSCHEIDER	1
MATTHES	1
MECKE	1
MICHAELI	1
REHFELD	1
ROOS	1
WERNER (GREGORY)	1
WIELAGE	1

6 Sonstige Institute 7 Beteiligungen

	HEUBERGER	2
	HAFERKAMP	1
	HENNEMANN	1
	HOLLAND-LETZ	1
	KRÖNING	1
	REICHL	1
- 1		

Veröffentlichungen von Vorhaben in der Fachzeitschrift "SCHWEISSEN & SCHNEIDEN"

AiF-Nr.	Titel/Autoren
11.371 N	Entwicklung einer Methodik zur Optimierung der Schweißparameter beim Widerstandsschweißen U. Dilthey, HC. Bohlmann
11.379 B	Elektromagnetische Verträglichkeit von Widerstandsschweißmaschinen – Teil 1: Ausgangssituation und Messmethodik, Teil 2: Einflussfaktoren und Störminderungsmaßnahmen H. Mecke, R. Döbbelin, T. Winkler, R. Winkler, U. Gärtner
11.662 B	Einsatz anorganischer, nicht metallischer Verbindungsschichten für Hochtemperaturanwendungen R. Luhn, U. Basler
11.482 N	Heizelementstumpfschweißen von Polyamid E. Haberstroh, J. Schulz
11.932 B	Verbindung anorganischer, nicht metallischer Werkstoffe mit unterschiedlichen thermischen Ausdehnungskoeffizienten mittels Gradientenfolien M. Neuhäuser, T. Furche, S. Dahms
11.813 B	SprayWare — Beratungssystem für den Oberflächenschutz durch thermisches Spritzen P. Seyffarth, A. Scharff, FW. Bach, L. Josefiak, B. Bouaifi, T. Schlennstedt
11.658 B	Anwendung der Lock-in-Thermografie für die Qualitätsbeurteilung thermisch gespritzter Schichten B. Wielage, T. Schnick, U. Hofmann
11.880 B	Herstellen von SiC—Cermetbeschichtungen mittels Hochgeschwindigkeitsflammspritzen B. Wielage, J. Wilden, T. Schnick
11.931 N	Hochwertiges und wirtschaftliches Beschichten durch MSG-Tandemschweißen L. Appel, M. Serve, L. Baum, H. Cramer
11.811 N	Tiefenwirksame und schnelle laserstrahlungsinduzierte Aushärtung von Kunststoffklebverbindungen H. Haferkamp, A. von Busse, M. Goede
11.661 N	Lebensdauererhöhung im Bereich hoher Schwingspielzahlen durch günstige Schweißnahtgestaltung S. Pöting, H. Zenner

Veröffentlichungen von Vorhaben in der Fachzeitschrift "der praktiker"

AiF-Nr.	Titel/Autoren
12.473 B	Untersuchungen zur Prozessstabilität beim Metall-Schutzgasschweißen mit hochlegierten Drahtelektroden G. Neubert, M. Zinke, J. Schröder
12.188 B	Numerische Simulation von Widerstandsbuckelschweißungen A. Vichniakov, H. Herold, HJ. Wink, M.J. Greitmann
11.010 N	Hochdruckbrennschneiden für Formteile und zur Schweißfugenvorbereitung FW. Bach, H. Haferkamp, JH. Perleberg, G. Schreck, R. Versemann
12.487 N	Ansätze für eine Lichtbogensensorik beim Aluminiumschweißen U. Dilthey, G. Wilms
12.490 N	Verschleißfeste Leichtbauteile aus thermisch beschichteten Aluminiumschäumen M. Maurer, L. Zhao, E. Lugscheider
12.672 N	Fügen von Sinterkeramiken und Sintermetallen im Grünlingsstadium H. Potente, J. Schnieders, O. Hahn, M. Koyro, M. Maciej
12.187 N	Elektronenstrahlschweißen von dickwandigen Großrohren U. Dilthey, K. Woeste
12.535 B	Auswirkungen stickstoffhaltiger Schutzgase beim WIG-Schweißen hoch warmfester Nickelbasiswerkstoffe H. Zinke, A. Hübner
12.627 N	Bestimmung der Laserschweißeignung von Kunststoffen mit einem thermografischen Verfahren H. Haferkamp, A. von Busse, M. Hustedt, E. Haberstroh, R. Lützeler

Zusammenfassende Veröffentlichung:

Anwendung der Sonderschweißverfahren aus dem Fachausschuss 5 "Sonderschweißverfahren"

Teil 1: Reibschweißen

Teil 2: Diffusionsschweißen

Teil 3: Ultraschallschweißen

Teil 4: Bolzenschweißen

Fazit

(u.a. AiF-Vorhaben D 137, 10.365, 11.533, 11.932 und 12.937)

Veröffentlichungen von Vorhaben in der Fachzeitschrift "VTE"

AiF-Nr.	Titel/Autoren
11.468 N	Übertragbarkeit makroskopischer thermomechanischer Klebstoffkennwerte auf SMT-Klebeverbindungen J. Bornemann, M. Schlimmer
11.384 N	Prozessverhalten und Zuverlässigkeit höher schmelzender, bleifreier Lote S. Wege, T. Lauer
11.876 B	Lasergestütztes selektives Bonden von Glas/Silizium-Verbunden und Glas/Glas-Verbunden S. Wächter, S. Schundau, H. Müller, G. Köhler, M. Wild, A. Gillner, R. Poprawe
	Berichte über laufende Vorhaben:
13.309 B	Thermosonic Drahtbonden bei Verfahrenstemperaturen unter 100° C M. Petzold, F. Rudolf, KD. Lang
75 ZBG	Simultane Herstellung von Microvias durch kombinierte Mikro-Umform- und Fügetechnik U. Pape, F. Rudolf

Eingereichte Anträge bei der AiF

DVS-Nr.	Titel/Institutsleiter
1.043	Entwicklung eines Fertigungskonzeptes zur Herstellung von längstnahtgeschweißten Spezialrohren mit Tieftemperaturanforderungen zum Transport saurer Medien DILTHEY/BLECK
1.044	Bandplattieren von hochverschleißbeständigen Auftragschweißschichten auf Eisenbasis mittels Elektroschlackebandplattieren DILTHEY
1.045	Fügen von Al-Mg-Verbindungen und von Mg-Legierungen mit Berücksichtigung der Bindevorgänge in der Fügezone KALLA
1.046	Charakterisierung und Qualifizierung hochkarbidhaltiger Verschleißschutzschichten hinsichtlich des Einsatzes unter stark korrosiven Bedingungen HOLLAND-LETZ/DRAUGELATES (WESLING)
1.047	Rissminimierung beim Schweißen von Al-Legierungen mittlerer und höherer Festigkeit HEROLD
1.048	Untersuchung der metallurgischen Grundlagen zum Plasma-Pulver-Verbindungsschweißen dünner Aluminiumbleche WILDEN
1.049	Verbesserung der Heißriss-Sicherheit beim UP-Schweißen von Nickelbasislegierungen unter dem Aspekt gesteigerter Wirtschaftlichkeit DILTHEY
2.038	Einfluss des Verhältnisses von Substratrauheit und Spritzpartikelgröße auf die Haftung thermisch gespritzter Schichten BACH
2.039	Untersuchung der Störgrößeneinflüsse beim Atmosphärischen Plasmaspritzen mit modernen on-line Prozessdiagnostiken LUGSCHEIDER/LANDES
2.040	Entwicklung einer Online-Schichtdickenmessung für das Plasmaspritzen von Keramik BACH
3.051	Plasmaschweißen von verzinkten und höherfesten Stahlwerkstoffen sowie von Aluminium- und Magnesiumlegierungen im Dünnblechbereich BÖHME
3.060	Schweißtechnische und sensorische Anwendung des rotierenden Brenners DILTHEY
3.061	Untersuchung zum MSG-Impulslichtbogenschweißen mit Zwischenimpulsen bei Anwendungen von AC- und DC-Strömen BÖHME
3.062	Prozesssicheres MSG-Schweißen von hochlegierten Sonderwerkstoffen mit niederfrequent gepulstem Drahtvorschub HEROLD

DVS-Nr.	Titel/Institutsleiter
3.063	Lichtbogensensorsystem zum MSG-Band-Engspaltschweißen mit magnetischer Auslenkung des Lichtbogens DILTHEY
3.064	Anwendung der Plasma-MIG-Technologie beim Fügen beschichteter Stahlwerkstoffe MATTHES
3.065	Quasi-Interner Sensor zum MIG-Schweißen MATTHES
3.066	Untersuchung zum MSG-Löten von mit Zink beschichteten Stahlblechen mit dem Impulslichtbogen bei Anwendungen von impulsförmigen AC- und DC-Strömen in der Grundstromphase BÖHME
4.035	Prozesssimulation und Untersuchungen zum Widerstandsbuckelschweißen von Anschlussteilen mit niedriglegierten planen Federwerkstoffen auf Kupferbasis HEROLD/ROOS
4.036	Untersuchung des Beschichtungseinflusses beim Indirekt-Kurzzeit-Schweißen von einseitig kunststoffbeschichteten Stahlblechen DILTHEY
5.029	Entwicklungen zur Verfahrenskombination Reibschweißen und Umformen MATTHES
5.030	Optimierung der Verbindungsqualität und Ermittlung von verbesserten Prüfkriterien artfremder Schwarz-Weiß Bolzenschweißverbindungen BÖHME
5.031	Weiterentwicklung des Bolzenschweißens in halbnasser Umgebung zur industriellen Anwendbarkeit mit Verbindungsprüfung zur Qualitätssicherung BACH
5.032	Technologie zum Herstellen von Werkzeugen zum Mikrospritzgießen durch Diffusionsschweißen WILDEN
6.047	Qualifizierung zerstörungsfreier Prüfverfahren hinsichtlich ihrer Eignung zur Charakterisierung laserstrahlgeschweißter Überlappverbindungen an Stahl WOHLFAHRT (DILGER)
6.048	Untersuchungen zum Laserstrahlbohren von Schmierlöchern in metallischen Komponenten und Modulen für die Kraftfahrzeugindustrie HEROLD
6.049	Hochfrequentes Strahlpendeln zur Erhöhung der Prozessstabilität beim Laserstrahlschweißen mit hoher Schmelzbaddynamik HAFERKAMP
6.050	Entwicklung eines Meßverfahrens für die Diagnostik des Elektronenstrahles an Atmosphäre DILTHEY
6.051	Schweißnahtqualität und Anwendungspotential beim Remote-Schweißen mit hoher Leistung JÜPTNER
7.041	Entwicklung eines Reflowlötprozesses zur Verarbeitung von THT-Bauteilen REICHL

DVS-Nr.	Titel/Institutsleiter
7.042	Weiterentwicklung des Hochtemperaturlötens mit Ledeburit-Loten BACH
7.043	Entwicklung des aktiven Breitspaltfügens beim Hart- und Hochtemperaturlöten zur Spannungs- reduzierung in Mischverbunden LUGSCHEIDER
7.044	Beanspruchungsgerechter Verschleißschutz für Bauteile aus Titanwerkstoffen in tribologischen Systemen LUGSCHEIDER
7.045	Entwicklung eines Controlled Atmosphere Brazing (CAB) Verfahrens zum Fügen von Aluminiumguss- und Aluminiumknetlegierungen WIELAGE
7.046	Modifizierte Ni-Basis-Standardlote zum Hochtemperaturlöten von hochlegierten, stark korrosiv beanspruchten Stählen WIELAGE
8.035	Untersuchungen zum Einfluß der Bauteilsteifigkeit auf die Ausbildung härtungsbedingter Schädigungen in Klebverbindungen beim Einsatz hochfester Klebstoffe HAHN
8.038	Ermittlung des Einflusses von Crashbelastungen auf das Tragverhalten geklebter Aluminiumverbindungen HAHN
8.039	Geklebte Rohrrahmenkonstruktionen zum Einsatz in Leichtbaustrukturen, wie hochwertigen Rehabilitationsmitteln oder Fahrrädern SCHLIMMER
8.040	Auslegung von strukturellen FVK-Metall-Klebverbindungen für Windenergieanlagen HENNEMANN
9.032	Numerische Simulation von Gefügeentwicklung, Verzug und Eigenspannungen zur Verbesserung des Einsatzverhaltens geschweißter Guss/Strang-Komponenten aus Aluminium GUMBSCH
9.038	Auslegung von zähelastischen Metall/Faserverbundsandwich-Verbindungen SCHLIMMER
9.039	Wirtschaftlicher Leichtbau durch Reibrührschweißen ZENNER/KALLA
9.040	Numerische Auslegung von Klebverbindungen mit Schaumklebebändern DILGER
9.041	Experimentelle und theoretische Ermittlung der Eigenspannungen an ausgewählten Aluminiumschweißverbindungen BÖHME/KOSTEAS/WOHLFAHRT (DILGER)
10.037	Sicherung der Ausbeute und Zuverlässigkeit industriell gefertigter direkt wafergebondeter mikromechanischer Sensoren GUMBSCH/REICHL

DVS-Nr.	Titel/Institutsleiter
10.038	Modellbaukasten für die Simulation von Mikrofügeverbindungen in Mikroelektronik und Mikrosystemtechnik WILDE/DRAUGELATES (WESLING)
10.039	Definition und Ermittlung der für die Mikro-Applikation von Klebstoffen kritischen rheologischen Eigenschaften HENNEMANN/MEUSEL
10.040	Zuverlässige Montagetechnik für Baugruppen mit Chip-Scale Packages WILDE/REICHL
10.041	Mikro-Laser-Lichtbogen-Schweißen (Mikro-LASARC) POPRAWE/DILTHEY
10.042	Beständige, dichte Metall-Kunststoff- Verbindungen an Premolded-Gehäusen der Mikroelektronik WILDE
11.001	Einfluss von Raumlageeffekten und Oberflächeneigenschaften beim Laserdurchstrahlschweißen von Kunststoffen HAFERKAMP (früher 8.037)
11.002	Heizelementschweißen von Kunststoffen – Potentiale und Grenzen im Hinblick auf Zykluszeit- und Qualitätsoptimierung (POTENTE)
11.003	Bemessungskennwerte für die Verbindungsauslegung und werkstoff- /prozessabhängige Nahteigenschaften beim Vibrationsschweißen verstärkter Thermoplaste EHRENSTEIN (früher 8.033)
11.004	Schweißen von Thermoplasten mit zellularer Struktur POTENTE/HAHN (früher 8.034)
11.005	Experimentelle Ermittlung des mechanischen Verhaltens von Kunststoffklebverbindungen mit ortsaufgelöster Verformungsmessung SCHLIMMER (früher 8.036)

Beteiligungen der Forschungsinstitute an den eingereichten AiF-Anträgen

Gesamtzahl: 55 / 29 Forschungsinstitute beteiligt

Beteiligung von Forschungsinstituten: 68

(Forschungsinstitute durch den Namen des Institutsleiters gekennzeichnet)

2 DVS-Institute		7 Beteiligungen
	BÖHME KALLA	5 2
	KALLA	2

20 Hochschul-Institute 49 Beteiligungen

DILTHEY	8
BACH	4
HEROLD	4
DILGER	3
HAHN	3
LUGSCHEIDER	3
MATTHES	3
SCHLIMMER	3
WILDE	3
POTENTE	2
WESLING	2
WIELAGE	2
WILDEN	2
BLECK	1
EHRENSTEIN	1
KOSTEAS	1
LANDES	1
MEUSEL	1
ROOS	1
ZENNER	1

7 Sonstige Institute 12 Beteiligungen

REICHL	3
GUMBSCH	2
HAFERKAMP	2
HENNEMANN	2
HOLLAND-LETZ	1
JÜPTNER	1
POPRAWE	1

Entscheidungen über Kurzanträge in den Fachausschüssen

DVS-Nr.	Titel/Institutsleiter
1.02.1-1	Untersuchung der metallurgischen Grundlagen zum Plasma-Pulver-Verbindungsschweißen dünner Aluminiumbleche WILDEN befürwortet eingereicht bei der AiF
1.02.2-1	Verbesserung der Heißriss-Sicherheit beim UP-Schweißen von Alloy 617 unter dem Aspekt gesteigerter Wirtschaftlichkeit DILTHEY befürwortet eingereicht bei der AiF
1.02.1-2	Werkstoffkundliche Untersuchungen zur Verbesserung der Reibschweißeignung von Stahl mit hochwarmfesten und verschleißfesten Aluminiumlegierungen BÖHME befürwortet
1.02.2-2	Schweißtechnische Untersuchungen zum Einsatz nichtrostender austenitischer Edelstähle für Anwendungen im Karosseriebau HEROLD befürwortet
1.02.3-2	Metallurgische Aspekte beim thermischen Fügen von Aluminium-Stahl-Verbindungen mit Lichtbogenverfahren FÜSSEL nicht befürwortet
1.02.4-2	Feinschweißen mit Schweißzusatzwerkstoff HAFERKAMP/BACH nicht befürwortet
1.02.5-2	Veränderung der Korrosionsbeständigkeit von neuentwickelten und handelsüblichen nichtrostenden Werkstoffen durch einen Schweißprozeß und Entwicklung eines praktikablen Werkstoffauswahltools DILGER nicht befürwortet
1.02.6-2	In situ Legierungsbildung beim Löten hochfester Stahlwerkstoffe mittels MSG-Tandemtechnik DILTHEY nicht befürwortet
2.02.1-1	Entwicklung von Flammspritzzusätzen auf Kunststoffbasis mit sicherheitsfördernden Eigenschaften THIER nicht befürwortet
2.02.2-1	Entwicklung einer Online-Schichtdickenmessung für das Plasmaspritzen von Keramik BACH befürwortet eingereicht bei der AiF
2.02.3-1	Untersuchung der Störgrößeneinflüsse beim Atmosphärischen Plasmaspritzen mit modernen on-line Prozessdiagnostiken LUGSCHEIDER/LANDES befürwortet eingereicht bei der AiF
2.02.2-2	Untersuchung des Einflusses der Morphologie der Wolframcarbide auf die Eigenschaften von Verschleißschichten am Beispiel des Plasmapulverauftragschweißens HEROLD befürwortet
2.02.3-2	Entwicklung multifunktioneller keramischer Schichten im System TiO2-Cr2O3 BEYER befürwortet
2.02.4-2	Ertüchtigung zerstörungsfreier Verfahren zur Prüfung thermisch gespritzter Schichten WIELAGE/CROSTACK befürwortet

DVS-Nr.	Titel/Institutsleiter
2.02.5-2	Entwicklung und Charakterisierung von plasma- und hochgeschwindigkeitsflamm-gespritzten, endkonturnahen, nachbearbeitungsreduzierten Schichten aus feinstfraktionierten Pulvern BACH befürwortet
3.02.1-1	Ermittlung von Kriterien zur schweißtechnologischen Bewertung von Wolframelektroden THIER/KEITEL befürwortet
3.02.2-1	Optimierte Lösungen für brennerintegrierte Absaugsysteme unter Anwendung neuer Schweißwerkstoffe – Entwicklung eines Umweltbrennerkonzeptes HEROLD nicht befürwortet
3.02.3-1	Anwendung der Plasma-MIG-Technologie beim Fügen beschichteter Stahlwerkstoffe MATTHES befürwortet eingereicht bei der AiF
3.02.4-1	Quasi-Interner Sensor zum MIG-Schweißen MATTHES befürwortet eingereicht bei der AiF
3.02.5-1	Untersuchung zum MSG-Löten von mit Zink beschichteten Stahlblechen mit dem Impulslichtbogen bei Anwendungen von impulsförmigen AC- und DC- Strömen in der Grundstromphase BÖHME befürwortet eingereicht bei der AiF
3.02.6-1	Lichtbogensensorsystem zum MSG-Band-Engspaltschweißen mit magnetischer Auslenkung des Lichtbogens DILTHEY befürwortet eingereicht bei der AiF
3.02.7-1	AC-MSG-Löten von hochfesten beschichteten und unbeschichteten Stahlblechen DILTHEY nicht befürwortet
3.02.8-1	Untersuchungen zum MSG-Flachdraht-Löten von beschichteten Feinblechwerkstoffen DRAUGELATES (WESLING)/KALLA befürwortet
3.02.1-2	MSG-Schweißen mit impulsstromgesteuerten HL-Kurzlichtbogen – Schweißen von Stahl mit höherer Arbeitsgeschwindigkeit bei verbesserter Nahtqualität BÖHME befürwortet
3.02.2-2	Magnetische Feldverhältnisse in der Umgebung von Lichtbogen-Schweißeinrichtungen MECKE/THIER befürwortet
3.02.3-2	Einfluss von Gasschläuchen auf die Schadgasproblematik in Schutzgasschweißprozessen DILTHEY befürwortet
3.02.4-2	Bewertung der Gesundheitsgefährdung durch Schweißrauchemissionen bei Anwendung moderner Schutzgasschweißverfahren MATTHES befürwortet
3.02.5-2	Potenziale und Grenzen des Einsatzes von gekühltem Argon beim Schweißen KEITEL nicht befürwortet
4.02.1-1WV	Untersuchungen zu den werkstoffspezifischen Versagensmechanismen von Widerstands- punktschweißungen unter Crash- und Ermüdungsbeanspruchungen ROOS befürwortet
4.02.1-2	Untersuchungen zum Anschweißen von Widerstandsschweißmuttern an Bleche aus höher- bis höchstfesten Werkstoffen

BÖHME/ROOS befürwortet

DVS-Nr.	Titel/Institutsleiter
4.02.2-2	Untersuchungen hinsichtlich des Einflusses einer Vorermüdung unter Einwirkung korrosiven Mediums auf das Crashverhalten von widerstandspunktgeschweißten Stahlblechstrukturen HAHN befürwortet
4.02.3-2	Untersuchung der Gefügeausbildung beim Widerstandspunktschweißen höherfester Stahlbleche DILTHEY nicht befürwortet
5.01.1-2 WV	Untersuchungen zum Einsatz des Ultraschallbuckelschweißens für das Verbinden von Kupferlegierungen HEROLD befürwortet
5.02.1-1	Technologie zum Herstellen von Werkzeugen zum Mikrospritzgießen durch Diffusionsschweißen WILDEN befürwortet eingereicht bei der AiF
5.02.2-1	Weiterentwicklung des Bolzenschweißens in halbnasser Umgebung zur industriellen Anwendbarkeit mit Verbindungsprüfung zur Qualitätssicherung BACH befürwortet eingereicht bei der AiF
5.02.1-2	Untersuchungen zum plastischen Fügen von Mischverbindungen mit speziell konturierter Kegelgeometrie (Reibschweißen mit Konturkegelgeometrie) BÖHME befürwortet
5.02.2-2	Rührreibschweißen von Stahl und Stahlwerkstoffkombinationen mit lokaler induktiver Erwärmung KALLA befürwortet
6.02.1-1	Entwicklung eines Meßverfahrens für die Diagnostik des Elektronenstrahles an Atmosphäre DILTHEY befürwortet eingereicht bei der AiF
6.02.2-1	Schweißnahtqualität und Anwendungspotential beim Remote-Schweißen mit hoher Leistung SEPOLD (JÜPTNER) befürwortet eingereicht bei der AiF
6.02.3-1	Entwicklung und Qualifizierung eines hybriden Laser-Plasma-Beschichtungsprozesses WILDEN nicht befürwortet
6.02.4-1	Hochfrequentes Strahlpendeln zur Erhöhung der Prozessstabilität beim Laserstrahlschweißen mit hoher Schmelzbaddynamik HAFERKAMP befürwortet
6.02.1-2	Vergleich unterschiedlicher Beschichtungen auf die Laserstrahlschweißegnung von höherfesten Stahlblechen BÖHME nicht befürwortet
6.02.2-2	Prozessgrundlagen für das Schweißen mit Hochleistungsdiodenlaser ZÄH befürwortet
6.02.3-2	Elektronenstrahlpräzisionsschweißen von Axialrundnähten mit Parallelkapillartechnik DILTHEY nicht befürwortet
6.02.4-2	Einlegieren von Hartstoffen mittels Laser- und Elektronenstrahl unter besonderer Berücksichtigung der Mehrstrahltechnik MATTHES/KEITEL nicht befürwortet
6.02.5-2	Nahtschweißen mit gepulsten Nd:YAG-Lasern und Anpassung der ahteigenschaften an mit Dauerstrichlasern geschweißte Nähte

HAFERKAMP befürwortet

DVS-Nr.	Titel/Institutsleiter
6.02.6-2	Qualifizierung des Vakuum- und Nonvakuum-Elektronenstrahlschweißens für duktile Aluminium-Druckgußlegierungen zum Einsatz bei modernen Leichtbaustrukturen DILGER/BACH befürwortet
7.02.1-1	Beanspruchungsgerechter Verschleißschutz für Bauteile aus Titanwerkstoffen in tribologischen Systemen LUGSCHEIDER befürwortet eingereicht bei der AiF
7.02.2-1	Modifizierte Ni-Basis-Standardlote zum Hochtemperaturlöten von hochlegierten, stark korrosiv beanspruchten Stählen WIELAGE befürwortet eingereicht bei der AiF
7.02.1-2	Hochtemperaturlöten von Stahlschwämmen LUGSCHEIDER/BLECK nicht befürwortet
7.02.2-2	Einfluss von Reparatur und Nacharbeit bleifreier Lötstellen auf die Zuverlässigkeit des Systems "elektronische Baugruppe" HEUBERGER befürwortet
7.02.3-2	Entwicklung galvanisch hergestellter Hochtemperaturlot-Folien, -Drähte und Beschichtungen aus Nickel-Chrom-haltigen Legierungen BACH befürwortet
7.2 IP	Volumeneffekte und technische Zuverlässigkeit von bleifreien Lötstellen HEUBERGER/MEUSEL/REICHL befürwortet
7.3 IP	Oberflächeneffekte von Komponenten zum bleifreien Löten REICHL/HEUBERGER befürwortet
8.02.1-1	Geklebte Rohrrahmenkonstruktionen im Leichtbau SCHLIMMER befürwortet eingereicht bei der AiF
8.02.2-1	Auslegung von strukturellen FVK-Metall-Klebverbindungen für Windenergieanlagen HENNEMANN befürwortet eingereicht bei der AiF
8.02.3-1	Untersuchung der Haftung von Klebstoffen und Beschichtungsstoffen auf Polymeroberflächen, die durch verschiedene Methoden vorbehandelt sind und Evaluation des Alterungsverhaltens der Vorbehandlungseffekte HENNEMANN nicht befürwortet
8.02.7-1	Ermittlung des Einflusses von Crashbelastungen auf das Tragverhalten geklebter Aluminiumverbindungen HAHN befürwortet eingereicht bei der AiF
8.02.1-2	Untersuchung des Alterungsverhaltens von Vorbehandlungseffekten auf Polymeroberflächen HENNEMANN befürwortet eingereicht bei der AiF
8.02.2-2	Untersuchungen des Haftungsverhaltens anorganischer Klebstoffe in hochtemperaturbeständigen Keramik-Metall-Verbunden unter der besonderen Berücksichtigung der Verbesserung der thermischen Stabilität und der Langzeitbeständigkeit KÖHLER nicht befürwortet
8.02.3-2	Klebschichtintegrierte Fixierung von Verbindungen während der Klebstoffaushärtung HAHN befürwortet

DVS-Nr.	Titel/Institutsleiter
9.01.3-2-WV	Modellierung der Kerbwirkung für laserstrahlgeschweißte Bauteile aus modernen Automobilwerkstoffen am Beispiel des Überlappstoßes BLECK/DILTHEY nicht befürwortet
9.02.1-1	Betriebsfestigkeit von geschweißten Fahrradrahmen SCHLIMMER befürwortet
9.02.2-1	Experimentelle und theoretische Ermittlung der Eigenspannungen an ausgewählten Aluminiumschweißverbindungen BÖHME/KOSTEAS/WOHLFAHRT(DILGER) befürwortet eingereicht bei der AiF
9.02.3-1	Untersuchung des Versagensverhaltens von stanzgenieteten und punktgeschweißten Verbindungen aus Aluminiumwerkstoffen im Hinblick auf die Vergleichbarkeit der Schwingfestigkeitsergebnisse HAHN/SONSINO Antrag wurde zurückgezogen
9.02.4-1	MSG-Löten: Ermittlung von Berechnungsgrundlagen DILTHEY nicht befürwortet
9.02.5-1	Schwingfestigkeit stoffschlüssig gefügter, offenporiger Aluminiumschäume MATTHES nicht befürwortet
9.02.1-2	Einfluss fertigungsbedingter Imperfektionen auf die Betriebsfestigkeit von Aluminiumklebverbindungen und Qualitätsklassifizierung KOSTEAS/BÖHME nicht befürwortet
9.02.2-2	Einfluss der Nahtvorbereitung und der Nahtausführung auf die Schwingfestigkeit hochwertiger Stahlkonstruktionen ZENNER befürwortet
9.02.3-2	Untersuchung des Versagensverhaltens von stanzgenieteten und punktgeschweißten Verbindunge aus Aluminiumwerkstoffen im Hinblick auf die Vergleichbarkeit der SchwingFestigkeitsergebnisse HAHN/SONSINO befürwortet
10.02.1-1	Prozesssteuerung und –diagnostik beim Laserstrahlschweißen von Mikrokomponenten für die Elektronik HAFERKAMP befürwortet
10.02.2-1	Zuverlässige Montagetechnik für Baugruppen mit Chip-Scale Packages WILDE/REICHL befürwortet eingereicht bei der AiF
10.02.3-1	Mikro-Laser-Lichtbogen-Schweißen (Mikro-LASARC) POPRAWE/DILTHEY befürwortet eingereicht bei der AiF
10.02.4-1	Entwicklung eines Verfahrens zur zerstörungsfreien Kontrolle des Aushärtungszustandes von Mikroklebverbindungen durch Fluoreszenzmessung HENNEMANN nicht befürwortet
10.02.5-1	Laserstrahl-Mikrohartlöten zur elektrisch-mechanischen Kontaktierung und Versiegelung hochtemperaturbelastbarer Komponenten GEIGER nicht befürwortet
10.02.6-1	Bestimmung der Prozessgrenzen beim Wärmeleitungslaserschweißen dünner Folien: Numerische Simulation und Experiment MATTHES nicht befürwortet

DVS-Nr.	Titel/Institutsleiter
10.02.7-1	Beständige, dichte Metall-Kunststoff- Verbindungen an Premolded-Gehäusen der Mikroelektronik WILDE befürwortet eingereicht bei der AiF
10.02.8-1	Definition und Ermittlung der für die Mikro-Applikation von Klebstoffen kritischen rheologischen Eigenschaften HENNEMANN/MEUSEL befürwortet eingereicht bei der AiF
10.02.1-2	Mechanische Prüfverfahren für Mikroverbindungen elektronischer Schaltungen mit extrem verkleinerten Geometrien MEUSEL/ REICHL befürwortet
10.02.2-2	Entwicklung eines löttechnischen Verfahrens zur Herstellung texturierter metallischer Verbundfolien mit offenporiger Mikrostruktur als Bipolelektroden für Miniatur- und Mikrobrennstoffzellen BACH befürwortet
10.02.3-2	Vakuumdichtes flussmittelfreies Löten mikrotechnischer Komponenten KÖHLER/WIELAGE nicht befürwortet
10.02.4-2	Zuverlässigkeit bleifrei gelöteter Leistungsbaugruppen WILDE befürwortet
8.02.4-1	Heizelementschweißen von Kunststoffen – Potentiale und Grenzen im Hinblick auf Zykluszeit- und Qualitätsoptimierung (jetzt FA 11) POTENTE befürwortet eingereicht bei der AiF
8.02.5-1	Weiterentwicklung von Schweißverfahren zum Trennen geschweißter Bauteile POTENTE nicht befürwortet (jetzt FA 11)
8.02.6-1	Einfluss von Raumlageeffekten sowie von Oberflächeneigenschaften auf Spaltüberbrückung und Prozessstabilität beim Laserdurchstrahlschweißen von Kunststoffen (jetzt FA 11) HAFERKAMP befürwortet eingereicht bei der AiF
11.02.1-2	Vibrationsverbindungstechnik faserverstärkter, dünnwandiger und großflächiger Formteile aus Duroplasten EHRENSTEIN befürwortet
11.02.2-2	Vibrationsschweißen von Verrippungen und Krafteinleitungselementen an oberflächenkritischen dünnwandigen Thermoplastbauteilen EHRENSTEIN nicht befürwortet
11.02.3-2	On-line-Prozess-Monitoring zur Qualitätskontrolle beim Laserdurchstrahlschweißen von thermoplastischen Kunststoffen HAFERKAMP befürwortet

Beteiligungen der Forschungsinstitute an den Kurzanträgen

Gesamtzahl: 87 Kurzanträge / 38 Forschungsinstitute beteiligt (eingereicht) / 110 Beteiligungen Gesamtzahl: 61 Kurzanträge / 34 Forschungsinstitute beteiligt (befürwortet) / 77 Beteiligungen (Forschungsinstitute durch den Namen des Institutsleiters gekennzeichnet)

5 DVS-Institute		Beteiligungen		
(4 beteiligt an Befürwortungen)		18 eingereicht	11 befürwortet	
	ВÖНМЕ	8	6	
	KEITEL	3	1	
	THIER	3	2	
	Kalla	2	2	
	KÖHLER	2	-	

25 Hochschul-Institute **Beteiligungen** (22 beteiligt an Befürwortungen) 47 befürwortet 70 eingereicht DILTHEY 11 5 7 **BACH** 6 **MATTHES** 6 3 HAHN 4 4 **HEROLD** 4 3 2 **DILGER** 3 LUGSCHEIDER 3 2 3 MEUSEL 3 3 2 **WIELAGE** 3 3 WILDE WILDEN 3 2 **BLECK** 2 2 **EHRENSTEIN** 1 **KOSTEAS** 1 **POTENTE** 2 1 ROOS 2 2 **SCHLIMMER** 2 CROSTACK 1 1 FÜSSEL **GEIGER** LANDES 1 MECKE 1 1 WESLING 1 1 ZÄH 1 1 **ZENNER**

8 Sonstige Institute	Beteiligungen		
(8 beteiligt an Befürwortungen)	22 eingereicht	19 befürwortet	
HAFERKAMP	6	5	
HENNEMANN	5	3	
REICHL	4	4	
HEUBERGER	3	3	
BEYER	1	1	
JÜPTNER	1	1	
POPRAWE	1	1	
SONSINO	1	1	

Impressum

Herausgeber

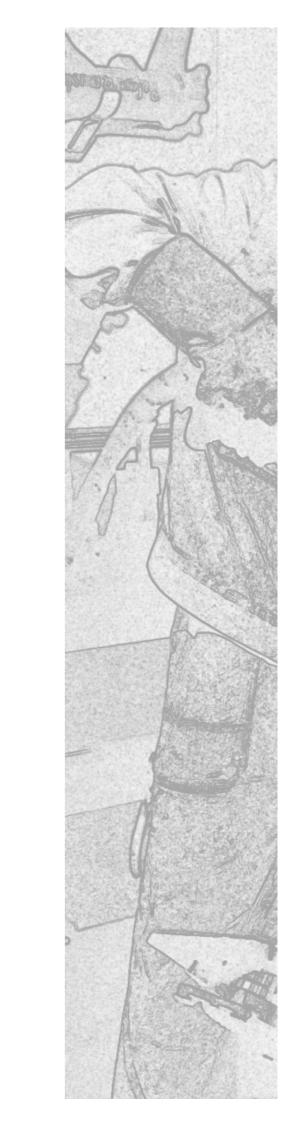
Forschungsvereinigung des DVS Aachener Straße 172 40223 Düsseldorf

Telefon: 0211/15 91-179 Telefax: 0211/15 91-200

E-Mail: forschungsvereinigung@dvs-hg.de

Internet: www.dvs-ev.de/fv

Redaktion


Dr.-Ing. Klaus Middeldorf Ingrid Günther Marcus Kubanek Christian Habel

Gestaltung

Marschall · Sott Agentur für Werbung, Düsseldorf

Druck

RGA Druck, Remscheid

